
Speculation Based Nested Locking Protocol to Increase the Concurrency of Nested 
Transactions 

P. Krishna Reddy and Masaru Kitsuregawa 
Institute of Industrial Science, The University of Tokyo 
7-22-1, Roppongi, Minato-ku, Tokyo 106-8558, Japan 

{ reddy, kitsure} @ tk1.iis.u-tokyo.ac.jp 

Abstract 

In this paper, we have proposed improved concurrency 
control protocol based on speculation for nested transuc- 
tions and explained how it increases both intra- and inter- 
transaction concurrency as compared to Mo.s.s's nested 
locking protocol. I n  the proposed speculative nested lock- 
ing (SNL) protocol, whenever a sub-trunsuctinn finishes 
work with a data object (produces after-image), it's pur- 
ent inherits the lock. The waiting sub-transaction curries 
nut speculutive executions by accessing both before- und 
after-images of preceding sub-transaction and selects ap- 
propriate execution after the termination of preceding sub- 
transaction. In this way, SNL allows multiple executions to 
be curried out for a trunsuction by trading extru processing 
and main niemoty resources to increuse concurrency. 

Index terms Concurrency control, nested transactions, 
locking, serializability, transaction processing. 

1 Introduction 

The traditional transaction model, although suitable for 
conventional database applications such as banking and air- 
line rcservation systems, does not provide much flexihility 
and high performance when uscd for complex applications 
such as object oriented systems, long-lived transactions, or 
distributed systems. Nested transactions have been pro- 
posed [23]  to overcome limitations of the flat transaction 
model. Nested transactions extend the notion that transac- 
tions are flat entities by allowing a transaction to invoke 
atomic transactions as well as atomic operations. 'I'hcy pro- 
vide safe concurrency within transaction, allow potential 
internal parallelism to be exploited and offer an appropriate 
control structurc to support their execution. Also, thcy 
provide finer control over failures by limiting the effects of 
failures to a small part of the transaction. This property is 
achieved by allowing transactions within a given transaction 

to fail independently of their invoking transaction. Nested 
transactions were implemented in system R [ I l l ,  Argus 
[20], Clouds [6], Locus [24] and Eden [16], and are widely 
accepted as a suitable mechanism for reliable distributed 
transaction processing systems. 

In nested locking (NL) concurrency control protocol pro- 
posed by Moss [23], each leaf-transaction follows two-phase 
locking (2PL) protocol [9, 101 for concurrency control. If a 
sub-transaction obtains a write lock, its parent inherits the 
lock only after its commit, as per 2PL rules. To access 
thc locked data object, a (sub)transaction has to wait until 
termination of a lock holding transaction. Therefore, in 
nested transactions, data contention increases lock waiting 
time which decreases the throughput performance of the 
system. In this paper we propose speculative nested lock- 
ing (SNL) protocol to increase concurrency by supporting 
multiple executions for a transaction with extra computing 
resources. In SNL whenever a sub-transaction T, finishes 
work with a data object (produces after-image), it's parent 
inherits the lock. The waiting (sub)transaction accesses both 
before- and after-images of Ti and then carries out specula- 
tive executions. However, the ordcr is maintained; i.e., thc 
waiting transaction selects appropriate execution only after 
termination of 27%. As such, there is no limitation on the 
number of levels of speculation but this number depends on 
the system's resources, such as the size of main memory 
and processing power. In SNL, the number of speculative 
executions carried out by a transaction increases exponen- 
tially as data contention increases. The SNL approach trades 
available resources to increase concurrency. 

As compared to NL, the SNL approach increases con- 
currency by allowing a sub-transaction to release the lock 
before termination without causing cascading aborts. (In 
this approach on termination of earlier transaction the wait- 
ing transaction drops invalid execution(s) and retains the 
valid one. However, this is different from aborting the 
entire transaction.) Further, if data objects accessed by 
a transaction are pre-declared, SNL increases both intra- 
as well as inter- transaction parallelism without violating 
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serializability criteria. Under simplified assumptions, we 
analyze the scope of SNL to increase concurrency among 
sub-transactions under limited resource environments, 

The work is motivated by the fact that with the continual 
improvement in hardware technology, we now have sys- 
tems with significant amounts of processing speed and main 
memory, hut more time is spent by transaction waiting for 
data (both I/O and remote data) than performing actual com- 
putations. Consequently, a (sub)transaction kceps locks for 
longer times if Moss’s NL is followed. As a result, through- 
put is decreased. Since the cost of both CPU and main 
memory is falling, we believe that extra processing power 
and memory could he added to the system at reasonable cost. 
The strength of SNL is that it offcrs thc potential to increase 
concurrency by trading extra main memory and processing 
resources without violating seralizability as a correctness 
criteria. Also, the speculative processing is transparent to 
thc uscr. (In this paper we arc not considering extension 
of speculation to interactive transactions.) Since SNL is 
lock-based, i t  could be integrated with existing applications 
based on Moss’s NL with little effort. 

In the next scction wc discuss related work. In section 
3 we explain nested transaction model and Moss’s NL 
protocol. In scction 4, we present the SNL approach, 
discuss its variants and explain the processing undcr limited 
resource environments. In section 5 we explain how SNL 
increases concurrcncy through an example. In section 6, we 
informally discuss the corrcctness ol the SNL approach. In 
scction 7, we perform concurrency analysis under simplified 
assumptions. In scction 8, wc discuss the pcrformancc issues 
conccrning SNL. Thc last section consists of summary and 
conclusions. 

2 Related work 

Several protocols exist to synchronize the execution of 
nested transactions. Reed developed a time-stamp based 
technique for nested transactions [26]. In [ 2 3 ] ,  Moss pre- 
scnted a concurrency control algorithm using 2PL for a 
nested transaction environment. In [25] theoretical frame- 
work has been presented to prove the serialisability of 
synchronization protocols for nested transactions. In [211, 
overview of research in  the area of nested transactions is 
given. In 1141, a concept of downward inheritance is intro- 
duced to improve the parallelism within a nested transac- 
tion. In  [22] the pic-write operation is introduced to incrcasc 
concurrency in a nested transaction processing environment. 
This model allows some particular sub-transactions to re- 
lease their locks before their ancestor transaction’s commit. 
This allows other sub-transactions to acquire required locks 
earlier. However, it is assumed that once the sub-transaction 
pre-writes the value, i t  will not abort. 

In the context of flat transactions, speculation has been 

employed in [2] to increase the transaction processing per- 
formance for real-time centralized environments that em- 
ploy optimistic algorithms for concurrency control. In [4], a 
branching transaction model has been proposed for parallel 
database systems where a transaction follows alternative 
paths of execution in case of a conflic1.h that paper the 
operation in limited resource environments is not analyzed. 
In [ 151 a proclamation-based model is proposed for cooper- 
ative environments in which a cooperative transaction pro- 
claims a set of values, one of which a transaction promises 
to write if it commits. The waiting transactions could access 
these proclaimed values and carry out multiple executions. 
This approach is mainly aimed at cooperative environments 
such as design databases and software engineering. In [17), 
a transaction processing approach has been proposed for 
distributed database systems whcre a transaction releases 
locks after completing execution by employing static 2PL. 
In [ I X ] ,  spcculation is employed to increase concurrency 
in mobilc environments, with the assumption that a mobile 
host could support a reasonable number of executions. 

The SNL approach is a lock based approach and proposed 
for nested transactions. Also, in the SNL approach, a 
transaction releases locks before execution and cascading 
aborts do not occur. In [I91 we have discussed the idea of 
extending speculation to nested transactions. In this paper 
we have improved the algorithm, included examples and 
concurrency analysis. 

3 

3.1 Nested transaction model 

Nested transactions and locking protocol 

We employ X ,  Y,  . . . to represent data objects. Trans- 
actions are represented by Ti,Tj,.  . .; where, z , ~ ’ , .  . . arc 
integer values. In nested transaction model [23] a trans- 
action may contain any numbcr of sub-transactions, which 
again may be composed of any number of sub-transactions- 
conceivably resulting in an arbitrary deep hierarchy of 
nested transactions. The root transaction which is not cn- 
closed in any transaction is called the top-level transaction 
(TLT). Transactions having sub-transactions are called par- 
ent transactions (P’rs), and their sub-transactions are their 
children. Leaf-transactions (LTs) arc those transactions 
with no children. The ancestor (descendant) relation is the 
reflexive transitive closure of the parent (child) relation. We 
will use the term superior (inferior) for the non-reilcxive 
version of the ancestor (descendant), The children of one 
parent are called siblings. The set of descendants of a trans- 
action togcthcr with their parcntkhild relationships is called 
the transaction’s hierarchy. In the following, we will use the 
term ‘transaction’ to denote TLT, PT, and LT. The hierar- 
chy of a top-level transaction (TLT) can be represented by 
a transaction tree. The nodes of the tree represent transac- 
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tions, and the edges illustrate the parcnt/child relationships 
between the related transactions. In the transaction trcc 
shown in  Figure 1, 'TI represents TLT or root. A children of 
sub-transaction T3 are T,, T6, and T7, and the parent of T? 
is T2. 

\ I , 
, , Ts, 

\ 

Figure 1. Example of a Transaction tree. 

The propcrties defined for flat transactions arc atomic- 
ity, consistency, isolated execution, and durability (ACID 
properties). In thc nested transaction model, the ACID- 
properties are fulfilled for TLTs, while only a subsct of 
them are defined for sub-transactions. A sub-transaction 
appears atomic to the other transactions and may commit 
and abort independently. Aborting a sub-transaction docs 
not effcct the outcome of the transactions not belonging to 
the sub-transaction's hierarchy, and hence sub-transactions 
act as firc-walls, shielding the outside world from internal 
failures. The durability of the effects of a committed sub- 
transaction depcnds on the outcomc of its superiors. Even 
if  a sub-transaction commits, aborting one of its supcriors 
will undo its effects. A sub-transaction's cffcct becomes 
permanent only when its TLT commits. 

Assumptions We assume only LTs pcrform data manip- 
ulation operations and issue lock requests to obtain locks 
and PTs act as a place holdcrs for the locks'. An LT is a 
flat transaction as dcfined in [3]; i.e., it is a representation 
of execution that idcntifies Rcad and Write operations and 
indicates the order in which these operations arc cxccutcd. 
It is assumed that no transaction reads or writes data objects 
more than once. Also, a transaction reads before it writes 
any data object. 

Knowledge of after-image : Normally, an LT copies data 
objects through read operations into private working spacc 
and issues a series of update operations. For the SNi, 
approach, wc assume that for any data object X, writc 
operation is issued whencvcr it completes work with the 
data object. This assumption is also adopted in [ 1, 271. 

'This restriction does not reduce the generality of the modc1[23] 

3.2 Nested locking protocol 

i n  this section we will summarize the NL protocol pro- 
posed by Moss[23]. Conventional locking protocols offer 
two modes of synchronization - Read, which permits mul- 
tiple transactions to share an object at a time, and Write, 
which gives the right to a single transaction for exclusively 
accessing an object. Possible lock modes on an object are 
NL-, R-, and W-mode. Thc null mode (NL) represents the 
absence of a lock request for or a lock on the object. A 
transaction can acquire a lock on object X in some mode M; 
then it holds lock in mode M until its termination. Besides 
holding a lock a transaction can retain a lock. When a 
sub-transaction commits, its PT inherits its locks and then 
retains them. If a transaction holds a lock, it has the right 
to access the locked object (in the corresponding mode), 
which is not true for retained locks. A retained lock is only a 
place holder. A retained W-lock, indicates that transactions 
outside the hierarchy of the retainer can not acquire the 
lock, but that descendants of the retaincr potentially can. 
That is, if a transaction Ti retains an W-lock, then all non 
descendants of Ti can not hold the lock in eithcr W- or in 
R-mode. If Ti is a rctaincr of an R-lock, it is guaranteed that 
a non-descendant ol' Ti can not hold thc lock in W-mode, 
but potentially can in R-mode. As soon as a transaction 
hecomcs a retainer of a lock, i t  remains a retainer for that 
lock until it  terminates. 

Thc NL rules for a transaction T, are as follows. 

0 NL1 : T, may acquire a lock in R-tnodc if 

-- no other transaction holds the lock in W-modc, 
and 

-- all transactions that retain the lock in W-mode 
are its ancestors. 

0 NL2 : T, may acquire a lock in  W-mode if 

-- no other transaction holds thc lock in W- or 
R-mode, and 

-- all transactions that rctain the lock in W- or 
R-mode arc its ancestors. 

0 NL3 : When T, commits, its parcnt inherits its (held 
or retaincd) locks. After that, Ti's parcnt retains the 
locks in the same mode (W or R) in which T, held or 
retained the locks previously. 

0 NL4 : Whcn T, aborts, i t  releases all locks it holds or 
retains. If any of its supcriors holds or retains any of 
these locks they contintic to do so. 

Note that the inheritance mechanism (Rule NL3) may 
cause a transaction to rctain several locks on the same 
object. In such a case, a transaction retains a most restrictive 
lock. 
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4 Speculative nested locking 

4.1 Lock modes and commit dependency 

In the SNL approach, the duration of lock in W-mode 
is partitioned into three modes, EW- (Executive Write)- 
, PSW(Passive Speculative Write)- and ASW (Active 
Speculative Write)-mode. The LTs request only R- or 
EW-mode lock. Also, note that an LT holds a lock, and a 
PT (or TLT) retains a lock. 

An LT requests a lock in R-mode to read a data object 
and in EW-mode both to rcad and write a data object. Lock 
conversion from R- to EW-mode is not allowed.2 An LT 
converts lock from EW-mode to PSW-mode whcncver it 
produces after-image and holds the lock in the same mode 
until its termination. Whenever an LT holds lock in PSW- 
mode, its parent inherits and retains a lock in an ASW-mode. 
Let Tj be a PT and retained a lock in ASW-mode on a data 
object. As per SNL rulcs (explained in the section 4.2), Tj 

converts lock from ASW-mode to PSW-mode and retains in 
the same mode. Whencver TJ retains a lock in PSW-mode 
its parent inhcrits and retains lock in ASW-mode. 

For X, a retained ASW-lock indicates that descendants 
of the retaincr potentially can acquire lock in EW-mode, but 
all non-descendants of thc retaincr can acquirc a lock only 
after it converts the lock from ASW-modc to PSW-mode. 
Similarly, a ho ld  rctaincd lock in PSW-modc indicatcs that 
any other transaction which obtains lock in  R- or EW-modc 
should form commit dependency with lock holding transac- 
tion. If Ti forms a commit dependency with T', thcn Ti is 
committed only after termination of Tj .  Let Ti be an LT, TJ 
be any sub-transaction (an LT, PT or TLT) such that T3 is 
non-anccstor of Ti. In the SNL approach, Ti forms commit 
dependency with Tj under following situations. 

Commit dependency rules : 

If Ti obtains the lock in R-mode while Tj holds/retains 
a lock in PSW-mode on a data object, Ti forms a 
commit dependency with Tj. 

If Ti obtains the lock in EW-mode while Tj 
holds/retains a lock in R-mode or PSW-mode on 
a data object, Ti forms a commit dependency with Tj. 

(Note that as per nested rule a parent (ancestor) commits 
only after termination of transactions in its hierarchy. Therc- 
fore, even though an LT obtains a lock in R- or EW-mode 
while its parent (ancestor) retains a lock in PSW-mode (as 
per SNL rules in section 4.2), we do not form commit 
dependency with ancestor transactions.) 

'However one can observe that lock conversion can be easily 
incorporated. 

4.2 Speculative nested locking protocol 

We first explain the data structures used in SNL protocol. 

treex : We employ a tree data structure to organize 
the uncommitted versions of a data object produced 
by spcculativc executions. The notation X,(q 2 I )  
is used to represent the qth version of X. For a data 
object X, its tree is denoted by t reex .  It is a tree 
with committed vcrsion as the root and uncommitted 
versions as the rest of the nodes. 

Dependhet i  : Depend-seti is a set of transactions 
with which Ti has formed commit dependencies for 
all the data objects it  has accessed. 

We now present SNL synchronization rules. Each data 
object X is organized as a tree with X I  as a root. We use 
the notation Ti, to represent the infh (7ri 2 1) spcculativc 
execution of Ti. Note that deadlock handling [23] algorithms 
needs to be initiated whenevcr a deadlock occurs. 

SNLl : Lock acquisition Note that during lock 
acquisition whcncver Ti forms a commit dependency 
(as per commit depcndency rules) with T j ,  the identity 
of Tj is included in dependhe t i .  (Rules 1.b and 2.b 
increasc intra-transaction concurrency whcrcas rulcs 
1 .c and 2.c increase inter-transaction concurrency.) 

1 .  Transaction Ti may acquire a lock in  R-mode i f  

(a) no other transaction holds the lock in EW- 
mode, and 

(b) all transactions that retain the lock in  ASW- 
mode are ancestors of Ti and 

(c) no other transaction retains the lock in 
ASW-mode and for cach transaction that 
retaindholds a lock in PSW-mode, its TLT 
retains a lock in PSW-mode. 

2. Transaction Ti may acquire a lock in EW-mode 
if 

(a) no other transaction holds the lock in  R- or 
EW-mode and 

(b) all transactions that retain the lock in  R- or 
ASW-mode are ancestors O T T ,  and 

(c) no other transaction retains the lock in 
ASW-mode and for each transaction that 
retainsholds a lock in R-/PSW-mode, its 
TLT rctains a lock in R-/PSW-mode. 

SNL2 : Execution and inheritance 

1. Execution Suppose Ti be an LT, and is carrying 
out m speculative executions and obtains a 
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lock in  EW-mode on X. Let t i e e x  contains n 
versions. Then, each Tiq (q=l . . . m) splits into 
n speculative executions (one for each version 
of t , r eex ) .  
Lock conversion by an LT Whenever an LT 
(Ti) produces after-images during its execution, 
aftcr including each after-image of X as a child 
to the corresponding before-image of X’s tree, it 
converts the lock from EW-mode to PSW-mode 
and holds in the same mode. 

2. Inheritance The inheritance process can be 
separated into two types: LT to PT and PT to 
PT. 

(a) LT to PT Whenever an LT holds a lock in 
R-PSW-mode, its parent (Tj)inherits and 
retains the lock in R-/ASW-mode. (To 
avoid inconsistency, the two actions, lock 
conversion from EW- to PSW-mode by LT 
and lock inheritance by its PT should be 
carried out atomically. To be safe, an LT 
converts EW- to PSW-mode only after its 
parent inherits in ASW-mode) 
Lock conversion by a PT Whcn all sub- 
transactions of a PT (Tj)  finish work on 
X, if only one LT in Ti’s hierarchy holds 
the lock in  PSW-mode, T3 converts the lock 
from ASW- to PSW-mode and retains in the 
same inode without waiting for thc commit 
of other transactions in its hierarchy. 
Otherwise, if more than one T3’s LTs hold 
thc locks on X in PSW-modc, then T3 
converts the lock from ASW- to PSW-modc 
only after all L T s  which have accessed X 
have been committcd.’ 

Whenever a sub-transaction 
retains a lock in R-/PSW-mode, its parent 
inherits and rctains a lock in R-/ASW- 
mode 

(b) PT to PT 

SNL3 : Termination 

1 .  Commit A transaction T, commits by selecting 
appropriatc exccution only aftcr termination of 
all transactions in dependhe t i .  Each locked 
data object is updatcd with after-image produced 
by T, as the root. The Ti’s identity is removed 
from depend-srt of all rcmaining transactions. 
Also, the waiting transactions drop speculative 

‘In this protocol we assume that a sub-transoction either commits or 
aborts. If aborts. it rcleases all the locks both holdlretaioed. Next, it is 
resubmitted. This process repeats until it commits. However. an abort 
of a nonessential LT is allowed in nested environments [27]. We ore nut 
considering such option here. However, one can observe that SNL could 
be extended under such environments. 

2. 

executions carried out by reading before-images 
of T,. 
Abort When T, aborts, it releases all the locks it 
holds or retains. If any of its superiors holds or 
retains any of these locks they continue to do so. 
Also, each tree of a data object (accessed by Tt) 
is updated by removing after-images (with sub- 
trees) which were included by T,. Its identity 
is removed from the depend-set of all wait- 
ing transactions. The waiting transactions drop 
speculative executions carried out by reading 
after-images of T,. 

4.3 SNLnp and SNLp approacches 

In SNL, after inheriting a lock from a sub-transaction 
(as per rule SNL2), a PT can not donate the locks in turn 
to its PT, unless all sub-transactions in its hierarchy finish 
the work with corresponding data object. Without having 
knowledge of data objects accessed by its sub-transactions, 
a lock is held by a PT until termination of all transactions 
in its hierarchy. Therefore, based on the prior knowledge of 
data objcets accessed by a transaction, SNL can adaptively 
operate in two modes: SNLnp (SNL-no-predeclaration) and 
SNLp (SNL-predeclaration). 

In SNLnp mode, a lock is held by a PT till termination of 
all transactions in its hierarchy. Therefore, SNLnp increases 
only intra-transaction parallelism (up to only one level in 
the nested hierarchy). 

On the other hand, in SNLp-mode, once inherited the 
speculative locks from an LT, its PT (Ti) checks if any of 
its other sub-transactions requires access to corresponding 
data ob.jcct. If none, then Tt’s PT inherits the locks on 
the corresponding data object. In this way, speculative 
locks can hc donated outside nested transaction before its 
termination (under rule 1.c. and 2.c. ofSNL1). As a result, 
SNLp increases both intra- as well as inter-transaction 
concurrency. 

4.4 SNL under Limited resource environments 

In the SNL approach, the number of speculative execu- 
tions of a transaction increases exponentially as data con- 
tention increases. Since each speculative execution nceds 
scparate work space, the size of main memory available 
in the system limits the number of speculative exccutions 
that can he carried out. With this limitation, processing cost 
may not be considered as a considerable overhead as current 
technology providcs high spccd parallel computers at low 
cost. Under limited resource environments the number of 
speculative executions of a transaction could be limited as 
follows. Let amount of memory to carry out single execu- 
tion is one unit. Based on the available memory units, we 
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I decide the feaslble number of speculative executions that 
could be carrled out by a transactlon. Durmg proccsslng 
if the number of executlons crosses the fixed value, the 

T6 

T8 

T7 

transaction is either put to wait or aborted. 

5 Example 
llmr 

~ 

Consider follwing two transactions TI( T2 (T4 : 
{ V , X }  T5 : { x , y } ) , T ~  : { u , V } )  andT& : { U } ,  TR : 
(2 ) )  which are slmulataneoudy entered into the system 
(see Figure 2). Cons~der that all request locks in EW-mode. 
The processing employing NL and SNLp is as follows. 

NL Figure 3(a) depicts the processlng employing 
NL. T4 obtains lock on X only after tcrminatlon of 
Ts. Similary TJ obtains lock on V only after the abort 
of T4 or the corm" of hoth T4 and T2. Smilarly, T7 
obtains lock on U only after the abort of T3 or the 
commit of both 2'3 and T I .  

SNL Figure 3(b) depicts the processing with SNLp. 
At first, Ts, T4, Ti, and TR obtain locks in EW-mode 
on X, V, U, and Z respectively. Whenever T 5  and 
T4 produces after-images of X and V, respectively, 
T2 inherits the lock in  ASW-mode and whencvcr 2'3 
produces after-images of U, TI inherits the lock on 
ASW-modc. Next, T4 obtains lock in EW-mode and 
carries out two speculative executions by accessing 
both beforc- and alter-images of X. Due to prc- 
declared assumption (since T y  will not access V), T2 

decides that i t  has finished work with V and therefore 
changes lock on V from ASW- to PSW-mode. Then, 
TI inherits lock in ASW-mode on V and rctains in the 
same modc. Next, T3 obtains lock on V in EW-mode 
and carries out two speculative executions. Due to 
pre-declaration assumption (no other sub-transaction 
of TI will access U), TI decides that it has finished 
work on U ,  and converts lock from ASW- to PSW- 
modc. T, onbtains lock in EW-modc (unclcr rule 2.c 
of SNLI) carries out two executions by accessing 
before- and after-images of U. 

In this way SNLp increases both intra- and intcr- 
transaction parallelism of nested transactions. 

Figure 2. Depiction of TI and T6. 

(h) SNL 

Figure 3. Depiction of processing (a) NL (b) SNLp (In this 
figure, an arrow from from U to b, indicates b happens after 

U . )  

6 Correctness 

In this section we informally argue that the histories 
produced by SNL are serializable like histories produccd by 
NL[23]. 

In nested transactions ACID-properties are fulfilled for 
TLI's. Therefore, the execution of a group of TLTs is 
correct i f  it is cyuivalent to a serial execution of same TLTs. 
However, within TLT, each set of sihling transactions runs 
as it '  all the transactions that have committed ran in a serial 
order and all the transactions that aborted did not run at all. 
Since we assume all sub-transactions essentially commit 
(after re-submissions) the correctness criteria can be stated 
as follows. Let Ti be a TLT or a PT with 'k' siblings 
(children). Ti's execution is correct, iff it is equivalent to a 
serial execution of 'k' sibling transactions. 

We briefly argue that the commit depcndcncy rulcs and 
SNL rulcs preserve the correctness. Consider Ti and T3 
arc LTS that conflict (writc-write) on X under samc TLT. 
Suppose Ti first obtains a lock in EW-mode on X. When 
Ti converts its lock into PSW-mode, its parent inherits in  
ASW-mode. As per inheritance rules, the lock propagates 
to least common ancestor (LCA) of hoth Ti and Tj. The 

obtains lock and carries out speculative executions by 
accessing before and after-images. Also, T3 forms commit 
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dependency with Ti and its ancestors which arc in  LCA's 
hierarchy. When T3 forms a commit dependency, it commits 
only after termination of Ti and its ancestors which are in 
LCA's hierarchy. If Ti commits, i t  selects appropriatc 
speculative execution that ensures the order Ti < T3, In this 
way a conflict among any two LTs within a TLT, forces 
a serial order among siblings of their's LCA. In this way, 
the SNL approach forces a serial order between transactions 
through corresponding LCA of Conflicting transactions. 

Similarly, TLTs execute in a serial order by forcing the 
commit dcpcndcncy among TLTs. 

7 Concurrency analysis 

In this section we provide a simple analysis to demon- 
strate how NSL incrcascs concurrency by considering a set 
of transactions under the same parent. 

Figure 4. Depiction of processing undcr SNL when live 
transaction conflict on singlc data objcct (c dcnotes commit 

and n denotes abort). 

Consider that n transactions undcr the same parent con- 
flict on X. As pcr the proposed algorithm, a transaction rcads 
k ( k  2 1) versions of X, carries out k executions and then 
includes 'n new versions to the tree of X (We assume that 
each execution produccs a distinct version of X). Thcrcforc 
for any transaction if it conflicts with n transactions, it has 
to carry out 2" executions. Figure 4 depicts the processing 
when five subtransctions contlict on a single data object. 
To cover all possibilities of termination (commit and abort) 
of preceding transactions NSL carries out 2'l executions if 
it conflicts with T I  transactions. 

In the SNL approach, since each spcculativc cxecu- 
tion needs separate work space, the size of main memory 
available in the system limits the number of spcculative 
executions carried out by a transaction. With this limita- 
tion, processing cost may not be considered as a significant 
overhead as current technology provides high speed parallel 

computers at low cost. We assume that when we have 
memory space, sufficient processing power is available to 
carry out speculative executions in parallel, so we do not 
specify amount of CPU power explicitly. We assume that 
all transactions require the same amount of main memory 
for execution. Also, for a transaction, all its speculative 
executions require the same amount of main memory. We 
consider that each execution requires one unit of main mem- 
ory. We denote the amount of main memory availablc in  
the system by nzemorpinits (mus). 

Database systems vary with respect to available resources 
and data contention. Now we analyze how SNL increases 
the concurrency in such environments. 

7.1 Single conflict environments (Hot spots) 

In this section we analyze how SNL increases concur- 
rency by considering an hot-spot situation. Consider that 
n sub-transactions contlict on X. If T L  transactions serially 
conilict on data object X, the total numher of executions 
become equal to 2k ,  wherc, k=O to n. Thcrcfore to sup- 
port these executions system requires main memory equal 
to C 2' mus. 

Figure 5 shows the total number of executions (or mus) 
at dilfcrcnt values of n, for 2PL and SNL. For cxample if 
threc transactions conflict on data object X, 2PL requires 
3 mus and SNL requircs 7 mus (= 2' + 2' + I ) .  It also 
gives the ratio of mus rcquircd for SNL and 2PL. From 
this figure wc can observe that, hy doubling thc mcmory 
s i x ,  each pair conflicting transctions can be processed in 
parallel. If we increase the memory thrcc times, cach group 
of threc transactions can he proccssctl in parallel. In this 
way SNL incrcascs concuirency by trading extra memory 
and processing resourccs. 
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Conflicting lransactioiis 

Figure 5. Conllicting transactions vcrsus speculative 
executions (mus) 
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7.2 Multiple conflicts (long transactions) 

In multiple conflict environments, the object dependency 
among the data objects accessed by a transaction affects the 
number of speculative executions. We first explain the 
object dependency through example. 

Considcr three transactions TI, T2 and 7‘3 arrive to access 
(X), (X,Y) and (Y) respectively, in that order. TI accesses 
XI and then produces X2. When T2 accesses both X it 
splits into two executions (with XI and X2 ) and then each 
execution reads f i .  If computation on the Y is dependcnt 
on the value (read or written by T2) of X, the number of new 
versions added to Y’s tree in this case is two. Next, when 
T3 accesses Y, it has to carry out three executions since 
Y’s tree contains three versions, because Ti’s termination 
is indirectly depends on the on the teimination mode or 2’1. 

We formally define the object dependency as follows. 
Definition (depend(X,Y)) Given transaction Ti that ac- 
cesscs n objects (n 2 2). Let X and Y bc any data objects 
accessed by Ti. depend(X,Y)=true, if tui[Y] is an arbitrary 
function of r i [ X ] .  Otherwisc, depend(X,Y)=t’alse. Wc 
assume that for a data object X, d e p e n d ( X , X )  = true 
always holds. That is, w i [ X ]  is always an arbitrary function 
of r i [ X ] .  

If therc is no object dependcncy exists among the data 
essed by a transaction, 2” number of executions 

are carried out if i t  conflicts with n transactions. So the 
analysis is same as single conflict environments. 

However, if objcct dependency exists among the data 
objects accessed by a transaction, the SNL approach has 
to take into account the indirect dependencies. Let a 
transaction conflicts with 7~ transactions dircctly and n z  
transactions indirectly on a data object. Then, in the worst- 
case, the transaction has to carry out 2nfm executions under 
SNL. 

However, for any two data objects X and Y accessed 
by a transaction, depcnd(X,Y)=false is valid for majority 
of transaction processing applications. For transactions in  
real applications (such a s  banking and airlinc reservations), 
the computation on particular object is independent of value 
of other objects. If we observe the transaction profiles of 
TPC-A, TPC-B [12]and TPC-C [ 131 benchmarks, one can 
obscrve that there is no object dependency exists among 
data objects. 

We assume that by compiling transaction (or SQL) code, 
wc can identify the existence of object dependency among 
data objects accessed by a transaction. In [28] chopping 
algorithm is proposed which chops a transaction different 
pieces by checking thc dependency among data objects. If 
higher degrce object dependency exists among data objects 
(for example read the set of data objects and update the 
summary object) NL is prefcrrcd. 

8 Performance issues 

In this section we explain the performance issues con- 
cerning SNL. 

e No additional disk U 0  
The SNL approach involves no additional disk write 
cost for recovery. In centralized cnvironments, the 
system force-wrires after-images only after selccting 
appropriate final version. In distributctl environment 
also, the coordinator force-writes corresponding after- 
images only aftcr selecting the appropriate speculative 
execution. The participant force-writes corresponding 
after-images only arter receiving final commit mes- 
sage from the coordinator. Therefore, even though 
a transaction produces a number of versions for a 
data object during its exccution, force-writes only 
one version, aftcr selecting thc speculative exccution 
to he confirmed. Therefore, no cxtra disk write cost 
is involved. 

e No additional logging overhead by employing de- 
layed logging In SNL the logging process is delayed 
until a transaction confirins the single version. So 
even though many versions are creakd all are kept in 
the main mcmory. However due to delayed logging, 
the alrcady completcd work may bc wasted in  case of 
a failure. We believe that the effect of such failures 
on the performance is negligiblc. 

e Message overheads: negligible 
In distributed environment we separate the message 
overhead issue into two parts: cxccution and two- 
phase commit (2PC). During execution, aftcr images 
of a data object arc sent to object sites whcnevcr a 
transaction produccs them. This will increase the 
number of messages. If no transaction is waiting for 
corrcsponding data okject at thc object site, this mes- 
sage is wastcd. This can be rcduced in two ways. Onc, 
after-images of local data objects are included to re- 
spective trees whenevcr these are produccd, howcvcr, 
rcmote data objcct values are sent with the “prepare” 
message of2PC. Second, aftcr-images are transferred 
only for remote hot spot data objects. Thus, with 
extra messages, concurrency can he increased by 
processing waiting lock requests. 

The numbcr of messages during commit 2PC is not 
incrcascd. After-images produccd by the transaction 
are piggy-hacked on commit processing mcssages. 
However, the size of thc message increascs but this 
will have negligible cffect on the performance. 
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9 Summary and conclusions 

In this paper we have proposed concurrency control 
approach based on speculation for nested transactions. In 
the SNL approach, a (sub)transaction releases a lock on the 
data object when it produces after-image.In this approach 
a transaction carries out multiple executions by reading 
both before- and after-images of preceding transaction. By 
trading cxtra resources SNL increases concurrency without 
violating serializability criteria. 

As a part of future work, we evaluate the performance 
through simulation experiments and formally prove correct- 
ness. 

Normally, a nested transaction consists of both essential 
and non-essential sub-transactions. If an essential sub- 
transaction aborts, the rest of the transaction has to be 
aborted. However an abort of non-essential sub-transaction 
is allowed in nested environmcnt. Howevcr, it should be 
noted that a non-essential sub-transaction could block the 
essential sub-transaction by holding thc crucial lock. We 
will investigate the performance by sclectively proccssing 
essential sub-transactions with speculation. 

We believe that our approach should work for dis- 
tributed electronic caminercc transaction environments. 
Evcn though electronic commerce attracts strong atten- 
tion not so many systems are working yet. We arc currently 
collaborating with industry to pick up some of real applica- 
tions and verify the effectiveness of our approach using rcal 
database configuration data. We believe that the simulation 
study in this paper is uscful to understand the bchavior of 
the SNL approach. But simulation study using rcal business 
database applications data will give us furthcr valuable in- 
sights. 
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