
Speculation Based Nested Locking Protocol to Increase the Concurrency of Nested
Transactions

P. Krishna Reddy and Masaru Kitsuregawa
Institute of Industrial Science, The University of Tokyo
7-22-1, Roppongi, Minato-ku, Tokyo 106-8558, Japan

{ reddy, kitsure} @ tk1.iis.u-tokyo.ac.jp

Abstract

In this paper, we have proposed improved concurrency
control protocol based on speculation for nested transuc-
tions and explained how it increases both intra- and inter-
transaction concurrency as compared to Mo.s.s's nested
locking protocol. I n the proposed speculative nested lock-
ing (SNL) protocol, whenever a sub-trunsuctinn finishes
work with a data object (produces after-image), it's pur-
ent inherits the lock. The waiting sub-transaction curries
nut speculutive executions by accessing both before- und
after-images of preceding sub-transaction and selects ap-
propriate execution after the termination of preceding sub-
transaction. In this way, SNL allows multiple executions to
be curried out for a trunsuction by trading extru processing
and main niemoty resources to increuse concurrency.

Index terms Concurrency control, nested transactions,
locking, serializability, transaction processing.

1 Introduction

The traditional transaction model, although suitable for
conventional database applications such as banking and air-
line rcservation systems, does not provide much flexihility
and high performance when uscd for complex applications
such as object oriented systems, long-lived transactions, or
distributed systems. Nested transactions have been pro-
posed [23] to overcome limitations of the flat transaction
model. Nested transactions extend the notion that transac-
tions are flat entities by allowing a transaction to invoke
atomic transactions as well as atomic operations. 'I'hcy pro-
vide safe concurrency within transaction, allow potential
internal parallelism to be exploited and offer an appropriate
control structurc to support their execution. Also, thcy
provide finer control over failures by limiting the effects of
failures to a small part of the transaction. This property is
achieved by allowing transactions within a given transaction

to fail independently of their invoking transaction. Nested
transactions were implemented in system R [I l l , Argus
[20], Clouds [6], Locus [24] and Eden [16], and are widely
accepted as a suitable mechanism for reliable distributed
transaction processing systems.

In nested locking (NL) concurrency control protocol pro-
posed by Moss [23], each leaf-transaction follows two-phase
locking (2PL) protocol [9, 101 for concurrency control. If a
sub-transaction obtains a write lock, its parent inherits the
lock only after its commit, as per 2PL rules. To access
thc locked data object, a (sub)transaction has to wait until
termination of a lock holding transaction. Therefore, in
nested transactions, data contention increases lock waiting
time which decreases the throughput performance of the
system. In this paper we propose speculative nested lock-
ing (SNL) protocol to increase concurrency by supporting
multiple executions for a transaction with extra computing
resources. In SNL whenever a sub-transaction T, finishes
work with a data object (produces after-image), it's parent
inherits the lock. The waiting (sub)transaction accesses both
before- and after-images of Ti and then carries out specula-
tive executions. However, the ordcr is maintained; i.e., thc
waiting transaction selects appropriate execution only after
termination of 27%. As such, there is no limitation on the
number of levels of speculation but this number depends on
the system's resources, such as the size of main memory
and processing power. In SNL, the number of speculative
executions carried out by a transaction increases exponen-
tially as data contention increases. The SNL approach trades
available resources to increase concurrency.

As compared to NL, the SNL approach increases con-
currency by allowing a sub-transaction to release the lock
before termination without causing cascading aborts. (In
this approach on termination of earlier transaction the wait-
ing transaction drops invalid execution(s) and retains the
valid one. However, this is different from aborting the
entire transaction.) Further, if data objects accessed by
a transaction are pre-declared, SNL increases both intra-
as well as inter- transaction parallelism without violating

296
0-7695-0789-1/00 $10.00 0 2000 IEEE

http://tk1.iis.u-tokyo.ac.jp

serializability criteria. Under simplified assumptions, we
analyze the scope of SNL to increase concurrency among
sub-transactions under limited resource environments,

The work is motivated by the fact that with the continual
improvement in hardware technology, we now have sys-
tems with significant amounts of processing speed and main
memory, hut more time is spent by transaction waiting for
data (both I/O and remote data) than performing actual com-
putations. Consequently, a (sub)transaction kceps locks for
longer times if Moss’s NL is followed. As a result, through-
put is decreased. Since the cost of both CPU and main
memory is falling, we believe that extra processing power
and memory could he added to the system at reasonable cost.
The strength of SNL is that it offcrs thc potential to increase
concurrency by trading extra main memory and processing
resources without violating seralizability as a correctness
criteria. Also, the speculative processing is transparent to
thc uscr. (In this paper we arc not considering extension
of speculation to interactive transactions.) Since SNL is
lock-based, i t could be integrated with existing applications
based on Moss’s NL with little effort.

In the next scction wc discuss related work. In section
3 we explain nested transaction model and Moss’s NL
protocol. In scction 4, we present the SNL approach,
discuss its variants and explain the processing undcr limited
resource environments. In section 5 we explain how SNL
increases concurrcncy through an example. In section 6, we
informally discuss the corrcctness ol the SNL approach. In
scction 7, we perform concurrency analysis under simplified
assumptions. In scction 8, wc discuss the pcrformancc issues
conccrning SNL. Thc last section consists of summary and
conclusions.

2 Related work

Several protocols exist to synchronize the execution of
nested transactions. Reed developed a time-stamp based
technique for nested transactions [26]. In [2 3] , Moss pre-
scnted a concurrency control algorithm using 2PL for a
nested transaction environment. In [25] theoretical frame-
work has been presented to prove the serialisability of
synchronization protocols for nested transactions. In [211,
overview of research in the area of nested transactions is
given. In 1141, a concept of downward inheritance is intro-
duced to improve the parallelism within a nested transac-
tion. In [22] the pic-write operation is introduced to incrcasc
concurrency in a nested transaction processing environment.
This model allows some particular sub-transactions to re-
lease their locks before their ancestor transaction’s commit.
This allows other sub-transactions to acquire required locks
earlier. However, it is assumed that once the sub-transaction
pre-writes the value, i t will not abort.

In the context of flat transactions, speculation has been

employed in [2] to increase the transaction processing per-
formance for real-time centralized environments that em-
ploy optimistic algorithms for concurrency control. In [4], a
branching transaction model has been proposed for parallel
database systems where a transaction follows alternative
paths of execution in case of a conflic1.h that paper the
operation in limited resource environments is not analyzed.
In [151 a proclamation-based model is proposed for cooper-
ative environments in which a cooperative transaction pro-
claims a set of values, one of which a transaction promises
to write if it commits. The waiting transactions could access
these proclaimed values and carry out multiple executions.
This approach is mainly aimed at cooperative environments
such as design databases and software engineering. In [17),
a transaction processing approach has been proposed for
distributed database systems whcre a transaction releases
locks after completing execution by employing static 2PL.
In [I X] , spcculation is employed to increase concurrency
in mobilc environments, with the assumption that a mobile
host could support a reasonable number of executions.

The SNL approach is a lock based approach and proposed
for nested transactions. Also, in the SNL approach, a
transaction releases locks before execution and cascading
aborts do not occur. In [I91 we have discussed the idea of
extending speculation to nested transactions. In this paper
we have improved the algorithm, included examples and
concurrency analysis.

3

3.1 Nested transaction model

Nested transactions and locking protocol

We employ X , Y, . . . to represent data objects. Trans-
actions are represented by Ti,Tj,. . .; where, z , ~ ’ , . . . arc
integer values. In nested transaction model [23] a trans-
action may contain any numbcr of sub-transactions, which
again may be composed of any number of sub-transactions-
conceivably resulting in an arbitrary deep hierarchy of
nested transactions. The root transaction which is not cn-
closed in any transaction is called the top-level transaction
(TLT). Transactions having sub-transactions are called par-
ent transactions (P’rs), and their sub-transactions are their
children. Leaf-transactions (LTs) arc those transactions
with no children. The ancestor (descendant) relation is the
reflexive transitive closure of the parent (child) relation. We
will use the term superior (inferior) for the non-reilcxive
version of the ancestor (descendant), The children of one
parent are called siblings. The set of descendants of a trans-
action togcthcr with their parcntkhild relationships is called
the transaction’s hierarchy. In the following, we will use the
term ‘transaction’ to denote TLT, PT, and LT. The hierar-
chy of a top-level transaction (TLT) can be represented by
a transaction tree. The nodes of the tree represent transac-

297

tions, and the edges illustrate the parcnt/child relationships
between the related transactions. In the transaction trcc
shown in Figure 1, 'TI represents TLT or root. A children of
sub-transaction T3 are T,, T6, and T7, and the parent of T?
is T2.

\ I ,
, , Ts,

\

Figure 1. Example of a Transaction tree.

The propcrties defined for flat transactions arc atomic-
ity, consistency, isolated execution, and durability (ACID
properties). In thc nested transaction model, the ACID-
properties are fulfilled for TLTs, while only a subsct of
them are defined for sub-transactions. A sub-transaction
appears atomic to the other transactions and may commit
and abort independently. Aborting a sub-transaction docs
not effcct the outcome of the transactions not belonging to
the sub-transaction's hierarchy, and hence sub-transactions
act as firc-walls, shielding the outside world from internal
failures. The durability of the effects of a committed sub-
transaction depcnds on the outcomc of its superiors. Even
if a sub-transaction commits, aborting one of its supcriors
will undo its effects. A sub-transaction's cffcct becomes
permanent only when its TLT commits.

Assumptions We assume only LTs pcrform data manip-
ulation operations and issue lock requests to obtain locks
and PTs act as a place holdcrs for the locks'. An LT is a
flat transaction as dcfined in [3]; i.e., it is a representation
of execution that idcntifies Rcad and Write operations and
indicates the order in which these operations arc cxccutcd.
It is assumed that no transaction reads or writes data objects
more than once. Also, a transaction reads before it writes
any data object.

Knowledge of after-image : Normally, an LT copies data
objects through read operations into private working spacc
and issues a series of update operations. For the SNi,
approach, wc assume that for any data object X, writc
operation is issued whencvcr it completes work with the
data object. This assumption is also adopted in [1, 271.

'This restriction does not reduce the generality of the modc1[23]

3.2 Nested locking protocol

i n this section we will summarize the NL protocol pro-
posed by Moss[23]. Conventional locking protocols offer
two modes of synchronization - Read, which permits mul-
tiple transactions to share an object at a time, and Write,
which gives the right to a single transaction for exclusively
accessing an object. Possible lock modes on an object are
NL-, R-, and W-mode. Thc null mode (NL) represents the
absence of a lock request for or a lock on the object. A
transaction can acquire a lock on object X in some mode M;
then it holds lock in mode M until its termination. Besides
holding a lock a transaction can retain a lock. When a
sub-transaction commits, its PT inherits its locks and then
retains them. If a transaction holds a lock, it has the right
to access the locked object (in the corresponding mode),
which is not true for retained locks. A retained lock is only a
place holder. A retained W-lock, indicates that transactions
outside the hierarchy of the retainer can not acquire the
lock, but that descendants of the retaincr potentially can.
That is, if a transaction Ti retains an W-lock, then all non
descendants of Ti can not hold the lock in eithcr W- or in
R-mode. If Ti is a rctaincr of an R-lock, it is guaranteed that
a non-descendant ol' Ti can not hold thc lock in W-mode,
but potentially can in R-mode. As soon as a transaction
hecomcs a retainer of a lock, i t remains a retainer for that
lock until it terminates.

Thc NL rules for a transaction T, are as follows.

0 NL1 : T, may acquire a lock in R-tnodc if

-- no other transaction holds the lock in W-modc,
and

-- all transactions that retain the lock in W-mode
are its ancestors.

0 NL2 : T, may acquire a lock in W-mode if

-- no other transaction holds thc lock in W- or
R-mode, and

-- all transactions that rctain the lock in W- or
R-mode arc its ancestors.

0 NL3 : When T, commits, its parcnt inherits its (held
or retaincd) locks. After that, Ti's parcnt retains the
locks in the same mode (W or R) in which T, held or
retained the locks previously.

0 NL4 : Whcn T, aborts, i t releases all locks it holds or
retains. If any of its supcriors holds or retains any of
these locks they contintic to do so.

Note that the inheritance mechanism (Rule NL3) may
cause a transaction to rctain several locks on the same
object. In such a case, a transaction retains a most restrictive
lock.

298

4 Speculative nested locking

4.1 Lock modes and commit dependency

In the SNL approach, the duration of lock in W-mode
is partitioned into three modes, EW- (Executive Write)-
, PSW(Passive Speculative Write)- and ASW (Active
Speculative Write)-mode. The LTs request only R- or
EW-mode lock. Also, note that an LT holds a lock, and a
PT (or TLT) retains a lock.

An LT requests a lock in R-mode to read a data object
and in EW-mode both to rcad and write a data object. Lock
conversion from R- to EW-mode is not allowed.2 An LT
converts lock from EW-mode to PSW-mode whcncver it
produces after-image and holds the lock in the same mode
until its termination. Whenever an LT holds lock in PSW-
mode, its parent inherits and retains a lock in an ASW-mode.
Let Tj be a PT and retained a lock in ASW-mode on a data
object. As per SNL rulcs (explained in the section 4.2), Tj

converts lock from ASW-mode to PSW-mode and retains in
the same mode. Whencver TJ retains a lock in PSW-mode
its parent inhcrits and retains lock in ASW-mode.

For X, a retained ASW-lock indicates that descendants
of the retaincr potentially can acquire lock in EW-mode, but
all non-descendants of thc retaincr can acquirc a lock only
after it converts the lock from ASW-modc to PSW-mode.
Similarly, a ho ld rctaincd lock in PSW-modc indicatcs that
any other transaction which obtains lock in R- or EW-modc
should form commit dependency with lock holding transac-
tion. If Ti forms a commit dependency with T', thcn Ti is
committed only after termination of Tj . Let Ti be an LT, TJ
be any sub-transaction (an LT, PT or TLT) such that T3 is
non-anccstor of Ti. In the SNL approach, Ti forms commit
dependency with Tj under following situations.

Commit dependency rules :

If Ti obtains the lock in R-mode while Tj holds/retains
a lock in PSW-mode on a data object, Ti forms a
commit dependency with Tj.

If Ti obtains the lock in EW-mode while Tj
holds/retains a lock in R-mode or PSW-mode on
a data object, Ti forms a commit dependency with Tj.

(Note that as per nested rule a parent (ancestor) commits
only after termination of transactions in its hierarchy. Therc-
fore, even though an LT obtains a lock in R- or EW-mode
while its parent (ancestor) retains a lock in PSW-mode (as
per SNL rules in section 4.2), we do not form commit
dependency with ancestor transactions.)

'However one can observe that lock conversion can be easily
incorporated.

4.2 Speculative nested locking protocol

We first explain the data structures used in SNL protocol.

treex : We employ a tree data structure to organize
the uncommitted versions of a data object produced
by spcculativc executions. The notation X,(q 2 I)
is used to represent the qth version of X. For a data
object X, its tree is denoted by t reex . It is a tree
with committed vcrsion as the root and uncommitted
versions as the rest of the nodes.

Dependhet i : Depend-seti is a set of transactions
with which Ti has formed commit dependencies for
all the data objects it has accessed.

We now present SNL synchronization rules. Each data
object X is organized as a tree with X I as a root. We use
the notation Ti, to represent the infh (7ri 2 1) spcculativc
execution of Ti. Note that deadlock handling [23] algorithms
needs to be initiated whenevcr a deadlock occurs.

SNLl : Lock acquisition Note that during lock
acquisition whcncver Ti forms a commit dependency
(as per commit depcndency rules) with T j , the identity
of Tj is included in dependhe t i . (Rules 1.b and 2.b
increasc intra-transaction concurrency whcrcas rulcs
1 .c and 2.c increase inter-transaction concurrency.)

1 . Transaction Ti may acquire a lock in R-mode i f

(a) no other transaction holds the lock in EW-
mode, and

(b) all transactions that retain the lock in ASW-
mode are ancestors of Ti and

(c) no other transaction retains the lock in
ASW-mode and for cach transaction that
retaindholds a lock in PSW-mode, its TLT
retains a lock in PSW-mode.

2. Transaction Ti may acquire a lock in EW-mode
if

(a) no other transaction holds the lock in R- or
EW-mode and

(b) all transactions that retain the lock in R- or
ASW-mode are ancestors O T T , and

(c) no other transaction retains the lock in
ASW-mode and for each transaction that
retainsholds a lock in R-/PSW-mode, its
TLT rctains a lock in R-/PSW-mode.

SNL2 : Execution and inheritance

1. Execution Suppose Ti be an LT, and is carrying
out m speculative executions and obtains a

299

lock in EW-mode on X. Let t i e e x contains n
versions. Then, each Tiq (q=l . . . m) splits into
n speculative executions (one for each version
of t , r eex) .
Lock conversion by an LT Whenever an LT
(Ti) produces after-images during its execution,
aftcr including each after-image of X as a child
to the corresponding before-image of X’s tree, it
converts the lock from EW-mode to PSW-mode
and holds in the same mode.

2. Inheritance The inheritance process can be
separated into two types: LT to PT and PT to
PT.

(a) LT to PT Whenever an LT holds a lock in
R-PSW-mode, its parent (Tj)inherits and
retains the lock in R-/ASW-mode. (To
avoid inconsistency, the two actions, lock
conversion from EW- to PSW-mode by LT
and lock inheritance by its PT should be
carried out atomically. To be safe, an LT
converts EW- to PSW-mode only after its
parent inherits in ASW-mode)
Lock conversion by a PT Whcn all sub-
transactions of a PT (Tj) finish work on
X, if only one LT in Ti’s hierarchy holds
the lock in PSW-mode, T3 converts the lock
from ASW- to PSW-mode and retains in the
same inode without waiting for thc commit
of other transactions in its hierarchy.
Otherwise, if more than one T3’s LTs hold
thc locks on X in PSW-modc, then T3
converts the lock from ASW- to PSW-modc
only after all L T s which have accessed X
have been committcd.’

Whenever a sub-transaction
retains a lock in R-/PSW-mode, its parent
inherits and rctains a lock in R-/ASW-
mode

(b) PT to PT

SNL3 : Termination

1 . Commit A transaction T, commits by selecting
appropriatc exccution only aftcr termination of
all transactions in dependhe t i . Each locked
data object is updatcd with after-image produced
by T, as the root. The Ti’s identity is removed
from depend-srt of all rcmaining transactions.
Also, the waiting transactions drop speculative

‘In this protocol we assume that a sub-transoction either commits or
aborts. If aborts. it rcleases all the locks both holdlretaioed. Next, it is
resubmitted. This process repeats until it commits. However. an abort
of a nonessential LT is allowed in nested environments [27]. We ore nut
considering such option here. However, one can observe that SNL could
be extended under such environments.

2.

executions carried out by reading before-images
of T,.
Abort When T, aborts, it releases all the locks it
holds or retains. If any of its superiors holds or
retains any of these locks they continue to do so.
Also, each tree of a data object (accessed by Tt)
is updated by removing after-images (with sub-
trees) which were included by T,. Its identity
is removed from the depend-set of all wait-
ing transactions. The waiting transactions drop
speculative executions carried out by reading
after-images of T,.

4.3 SNLnp and SNLp approacches

In SNL, after inheriting a lock from a sub-transaction
(as per rule SNL2), a PT can not donate the locks in turn
to its PT, unless all sub-transactions in its hierarchy finish
the work with corresponding data object. Without having
knowledge of data objects accessed by its sub-transactions,
a lock is held by a PT until termination of all transactions
in its hierarchy. Therefore, based on the prior knowledge of
data objcets accessed by a transaction, SNL can adaptively
operate in two modes: SNLnp (SNL-no-predeclaration) and
SNLp (SNL-predeclaration).

In SNLnp mode, a lock is held by a PT till termination of
all transactions in its hierarchy. Therefore, SNLnp increases
only intra-transaction parallelism (up to only one level in
the nested hierarchy).

On the other hand, in SNLp-mode, once inherited the
speculative locks from an LT, its PT (Ti) checks if any of
its other sub-transactions requires access to corresponding
data ob.jcct. If none, then Tt’s PT inherits the locks on
the corresponding data object. In this way, speculative
locks can hc donated outside nested transaction before its
termination (under rule 1.c. and 2.c. ofSNL1). As a result,
SNLp increases both intra- as well as inter-transaction
concurrency.

4.4 SNL under Limited resource environments

In the SNL approach, the number of speculative execu-
tions of a transaction increases exponentially as data con-
tention increases. Since each speculative execution nceds
scparate work space, the size of main memory available
in the system limits the number of speculative exccutions
that can he carried out. With this limitation, processing cost
may not be considered as a considerable overhead as current
technology providcs high spccd parallel computers at low
cost. Under limited resource environments the number of
speculative executions of a transaction could be limited as
follows. Let amount of memory to carry out single execu-
tion is one unit. Based on the available memory units, we

300

I decide the feaslble number of speculative executions that
could be carrled out by a transactlon. Durmg proccsslng
if the number of executlons crosses the fixed value, the

T6

T8

T7

transaction is either put to wait or aborted.

5 Example
llmr

~

Consider follwing two transactions TI(T2 (T4 :
{ V , X } T5 : { x , y }) , T ~ : { u , V }) andT& : { U } , TR :
(2)) which are slmulataneoudy entered into the system
(see Figure 2). Cons~der that all request locks in EW-mode.
The processing employing NL and SNLp is as follows.

NL Figure 3(a) depicts the processlng employing
NL. T4 obtains lock on X only after tcrminatlon of
Ts. Similary TJ obtains lock on V only after the abort
of T4 or the corm" of hoth T4 and T2. Smilarly, T7
obtains lock on U only after the abort of T3 or the
commit of both 2'3 and T I .

SNL Figure 3(b) depicts the processing with SNLp.
At first, Ts, T4, Ti, and TR obtain locks in EW-mode
on X, V, U, and Z respectively. Whenever T 5 and
T4 produces after-images of X and V, respectively,
T2 inherits the lock in ASW-mode and whencvcr 2'3
produces after-images of U, TI inherits the lock on
ASW-modc. Next, T4 obtains lock in EW-mode and
carries out two speculative executions by accessing
both beforc- and alter-images of X. Due to prc-
declared assumption (since T y will not access V), T2

decides that i t has finished work with V and therefore
changes lock on V from ASW- to PSW-mode. Then,
TI inherits lock in ASW-mode on V and rctains in the
same modc. Next, T3 obtains lock on V in EW-mode
and carries out two speculative executions. Due to
pre-declaration assumption (no other sub-transaction
of TI will access U), TI decides that it has finished
work on U , and converts lock from ASW- to PSW-
modc. T, onbtains lock in EW-modc (unclcr rule 2.c
of SNLI) carries out two executions by accessing
before- and after-images of U.

In this way SNLp increases both intra- and intcr-
transaction parallelism of nested transactions.

Figure 2. Depiction of TI and T6.

(h) SNL

Figure 3. Depiction of processing (a) NL (b) SNLp (In this
figure, an arrow from from U to b, indicates b happens after

U .)

6 Correctness

In this section we informally argue that the histories
produced by SNL are serializable like histories produccd by
NL[23].

In nested transactions ACID-properties are fulfilled for
TLI's. Therefore, the execution of a group of TLTs is
correct i f it is cyuivalent to a serial execution of same TLTs.
However, within TLT, each set of sihling transactions runs
as it ' all the transactions that have committed ran in a serial
order and all the transactions that aborted did not run at all.
Since we assume all sub-transactions essentially commit
(after re-submissions) the correctness criteria can be stated
as follows. Let Ti be a TLT or a PT with 'k' siblings
(children). Ti's execution is correct, iff it is equivalent to a
serial execution of 'k' sibling transactions.

We briefly argue that the commit depcndcncy rulcs and
SNL rulcs preserve the correctness. Consider Ti and T3
arc LTS that conflict (writc-write) on X under samc TLT.
Suppose Ti first obtains a lock in EW-mode on X. When
Ti converts its lock into PSW-mode, its parent inherits in
ASW-mode. As per inheritance rules, the lock propagates
to least common ancestor (LCA) of hoth Ti and Tj. The

obtains lock and carries out speculative executions by
accessing before and after-images. Also, T3 forms commit

301

dependency with Ti and its ancestors which arc in LCA's
hierarchy. When T3 forms a commit dependency, it commits
only after termination of Ti and its ancestors which are in
LCA's hierarchy. If Ti commits, i t selects appropriatc
speculative execution that ensures the order Ti < T3, In this
way a conflict among any two LTs within a TLT, forces
a serial order among siblings of their's LCA. In this way,
the SNL approach forces a serial order between transactions
through corresponding LCA of Conflicting transactions.

Similarly, TLTs execute in a serial order by forcing the
commit dcpcndcncy among TLTs.

7 Concurrency analysis

In this section we provide a simple analysis to demon-
strate how NSL incrcascs concurrency by considering a set
of transactions under the same parent.

Figure 4. Depiction of processing undcr SNL when live
transaction conflict on singlc data objcct (c dcnotes commit

and n denotes abort).

Consider that n transactions undcr the same parent con-
flict on X. As pcr the proposed algorithm, a transaction rcads
k (k 2 1) versions of X, carries out k executions and then
includes 'n new versions to the tree of X (We assume that
each execution produccs a distinct version of X). Thcrcforc
for any transaction if it conflicts with n transactions, it has
to carry out 2" executions. Figure 4 depicts the processing
when five subtransctions contlict on a single data object.
To cover all possibilities of termination (commit and abort)
of preceding transactions NSL carries out 2'l executions if
it conflicts with T I transactions.

In the SNL approach, since each spcculativc cxecu-
tion needs separate work space, the size of main memory
available in the system limits the number of spcculative
executions carried out by a transaction. With this limita-
tion, processing cost may not be considered as a significant
overhead as current technology provides high speed parallel

computers at low cost. We assume that when we have
memory space, sufficient processing power is available to
carry out speculative executions in parallel, so we do not
specify amount of CPU power explicitly. We assume that
all transactions require the same amount of main memory
for execution. Also, for a transaction, all its speculative
executions require the same amount of main memory. We
consider that each execution requires one unit of main mem-
ory. We denote the amount of main memory availablc in
the system by nzemorpinits (mus).

Database systems vary with respect to available resources
and data contention. Now we analyze how SNL increases
the concurrency in such environments.

7.1 Single conflict environments (Hot spots)

In this section we analyze how SNL increases concur-
rency by considering an hot-spot situation. Consider that
n sub-transactions contlict on X. If T L transactions serially
conilict on data object X, the total numher of executions
become equal to 2k , wherc, k=O to n. Thcrcfore to sup-
port these executions system requires main memory equal
to C 2' mus.

Figure 5 shows the total number of executions (or mus)
at dilfcrcnt values of n, for 2PL and SNL. For cxample if
threc transactions conflict on data object X, 2PL requires
3 mus and SNL requircs 7 mus (= 2' + 2' + I) . It also
gives the ratio of mus rcquircd for SNL and 2PL. From
this figure wc can observe that, hy doubling thc mcmory
s i x , each pair conflicting transctions can be processed in
parallel. If we increase the memory thrcc times, cach group
of threc transactions can he proccssctl in parallel. In this
way SNL incrcascs concuirency by trading extra memory
and processing resourccs.

30 35 7--
, 2 5 1 E!

1 1 5 1 . , ~ , I , , / x 1 5s :, ;, , 1 I:
3 i o log - *..'
I-"

..-- 5 ~.-.-
)(_/ *...

0
0 1 2 3 4 0

Conflicting lransactioiis

Figure 5. Conllicting transactions vcrsus speculative
executions (mus)

302

7.2 Multiple conflicts (long transactions)

In multiple conflict environments, the object dependency
among the data objects accessed by a transaction affects the
number of speculative executions. We first explain the
object dependency through example.

Considcr three transactions TI, T2 and 7‘3 arrive to access
(X), (X,Y) and (Y) respectively, in that order. TI accesses
XI and then produces X2. When T2 accesses both X it
splits into two executions (with XI and X2) and then each
execution reads f i . If computation on the Y is dependcnt
on the value (read or written by T2) of X, the number of new
versions added to Y’s tree in this case is two. Next, when
T3 accesses Y, it has to carry out three executions since
Y’s tree contains three versions, because Ti’s termination
is indirectly depends on the on the teimination mode or 2’1.

We formally define the object dependency as follows.
Definition (depend(X,Y)) Given transaction Ti that ac-
cesscs n objects (n 2 2). Let X and Y bc any data objects
accessed by Ti. depend(X,Y)=true, if tui[Y] is an arbitrary
function of r i [X] . Otherwisc, depend(X,Y)=t’alse. Wc
assume that for a data object X, d e p e n d (X , X) = true
always holds. That is, w i [X] is always an arbitrary function
of r i [X] .

If therc is no object dependcncy exists among the data
essed by a transaction, 2” number of executions

are carried out if i t conflicts with n transactions. So the
analysis is same as single conflict environments.

However, if objcct dependency exists among the data
objects accessed by a transaction, the SNL approach has
to take into account the indirect dependencies. Let a
transaction conflicts with 7~ transactions dircctly and n z
transactions indirectly on a data object. Then, in the worst-
case, the transaction has to carry out 2nfm executions under
SNL.

However, for any two data objects X and Y accessed
by a transaction, depcnd(X,Y)=false is valid for majority
of transaction processing applications. For transactions in
real applications (such a s banking and airlinc reservations),
the computation on particular object is independent of value
of other objects. If we observe the transaction profiles of
TPC-A, TPC-B [12]and TPC-C [131 benchmarks, one can
obscrve that there is no object dependency exists among
data objects.

We assume that by compiling transaction (or SQL) code,
wc can identify the existence of object dependency among
data objects accessed by a transaction. In [28] chopping
algorithm is proposed which chops a transaction different
pieces by checking thc dependency among data objects. If
higher degrce object dependency exists among data objects
(for example read the set of data objects and update the
summary object) NL is prefcrrcd.

8 Performance issues

In this section we explain the performance issues con-
cerning SNL.

e No additional disk U 0
The SNL approach involves no additional disk write
cost for recovery. In centralized cnvironments, the
system force-wrires after-images only after selccting
appropriate final version. In distributctl environment
also, the coordinator force-writes corresponding after-
images only aftcr selecting the appropriate speculative
execution. The participant force-writes corresponding
after-images only arter receiving final commit mes-
sage from the coordinator. Therefore, even though
a transaction produces a number of versions for a
data object during its exccution, force-writes only
one version, aftcr selecting thc speculative exccution
to he confirmed. Therefore, no cxtra disk write cost
is involved.

e No additional logging overhead by employing de-
layed logging In SNL the logging process is delayed
until a transaction confirins the single version. So
even though many versions are creakd all are kept in
the main mcmory. However due to delayed logging,
the alrcady completcd work may bc wasted in case of
a failure. We believe that the effect of such failures
on the performance is negligiblc.

e Message overheads: negligible
In distributed environment we separate the message
overhead issue into two parts: cxccution and two-
phase commit (2PC). During execution, aftcr images
of a data object arc sent to object sites whcnevcr a
transaction produccs them. This will increase the
number of messages. If no transaction is waiting for
corrcsponding data okject at thc object site, this mes-
sage is wastcd. This can be rcduced in two ways. Onc,
after-images of local data objects are included to re-
spective trees whenevcr these are produccd, howcvcr,
rcmote data objcct values are sent with the “prepare”
message of2PC. Second, aftcr-images are transferred
only for remote hot spot data objects. Thus, with
extra messages, concurrency can he increased by
processing waiting lock requests.

The numbcr of messages during commit 2PC is not
incrcascd. After-images produccd by the transaction
are piggy-hacked on commit processing mcssages.
However, the size of thc message increascs but this
will have negligible cffect on the performance.

303

9 Summary and conclusions

In this paper we have proposed concurrency control
approach based on speculation for nested transactions. In
the SNL approach, a (sub)transaction releases a lock on the
data object when it produces after-image.In this approach
a transaction carries out multiple executions by reading
both before- and after-images of preceding transaction. By
trading cxtra resources SNL increases concurrency without
violating serializability criteria.

As a part of future work, we evaluate the performance
through simulation experiments and formally prove correct-
ness.

Normally, a nested transaction consists of both essential
and non-essential sub-transactions. If an essential sub-
transaction aborts, the rest of the transaction has to be
aborted. However an abort of non-essential sub-transaction
is allowed in nested environmcnt. Howevcr, it should be
noted that a non-essential sub-transaction could block the
essential sub-transaction by holding thc crucial lock. We
will investigate the performance by sclectively proccssing
essential sub-transactions with speculation.

We believe that our approach should work for dis-
tributed electronic caminercc transaction environments.
Evcn though electronic commerce attracts strong atten-
tion not so many systems are working yet. We arc currently
collaborating with industry to pick up some of real applica-
tions and verify the effectiveness of our approach using rcal
database configuration data. We believe that the simulation
study in this paper is uscful to understand the bchavior of
the SNL approach. But simulation study using rcal business
database applications data will give us furthcr valuable in-
sights.

Acknowledgments

This work is supported by “Research for the future”
(in Japancse Mirai Kaitaku) under the program of Japan
Society for the Promotion of Science, Japan.

References

[11 D.Agrawal, A.EI Abbadi, and A.E.Lang, The pcr-
formance of protocols based on locks with ordered
sharing, IEEE Trunsuctions on Knowledge and
Datu Engineering, vo1.6, no.5, October 1994, pp.
805-8 18.

[2] Azer Bestavros and Spyridon Braoudakis, Valuc-
cognizant speculative concurrency control, proc.
of the 21th VLDB Conference, 199.5, pp. 122.133.

[3] P.A.Bernstein, V.Hadzilacos and N.Goodman,
Concurrency control and recovery in dutubuse
systems(Addison-Wesley, 1987).

[4] A.Burger and P.Thanisch, Branching transactions:
a transaction model for parallel database systems,
Lecture Notes in Computer Science 826.

[5] P.K.Chrysanthis and K. Ramamritam. A formalism
for extended transaction models. In proc. of 17th
VLDB conference, 1991.

[6] P.Dasgupta, R.Liblanc Jr, and WAppelbe. The
clouds distributed operating system. In proceed-
ings of 8th International Conference on Distributed
Computing Systems, San Jose, CA, 1988.

[7] C.T. Davies, Data processing spheres of control,
IBM Systems Journal. 17(2), pp. 179-198, 1978.

[8] A.K.Elmagarmid (ed.), Database transaction mod-
els for advanced applications, Morgan Kaufmann,
1992.

[9] K.R.Eswaran, J.N.Gray, R.A.Lorie, and I.L.
Traiger, The notions of consistency and predi-
cate locks in a database system, Communications
of ACM, Novcmbcr 1976.

[IO] J.N.Gray, Notes on database operating systems: in
operating systems an advanced course, Volume 60
of Lecture Notes in Computer Science, 1978, pp.
393-48 I .

[I I I J.Gray. et all. The recovery manager of the system
R database manager, ACM Computing Surveys,
13, pp.223-244, 1981.

[12] Jim Gray (ed.) The benchmark handbook for
database and transaction proccssing systems, Mor-
gan Kaufmann, 1991.

[131 TPC BENCHMARK-C, Standard specification,
Transaction processing council, Octobcr 1999.

[141 T.Harder and K.Rothermel, Concurrcncy control
issucs in nested transactions, The VLDB Journal,
v01.2, no.1, pp.39-74, 1993.

151 H.V.Jagadish, and O.Shmucli, A proclamation-
based model for cooperation transactions, pro-
ceedings of the 18th VLDB Confcrcncc, Canada,
1992.

161 W.H.Jessop, D.M.Jackobson, J.Baer, and C.Pu.
An introduction to the Eden transactional file sys-
tem. In proceedings of 2nd IEEE Symposium on
Reliability in Distributed Software and Database
Systems, Pittsburgh, PA, 1982.

304

[171 P.Krishna Reddy and Masaru Kitsuregawa, Im-
proving performance in distributed database sys-
tems using speculative transaction processing,in
proceedings of The Second Europeun Parallel and
Distributed Systems conference (Euro-PDS W),
1998, Vienna, Austria.

[181 P.Krishna Reddy and Masaru Kitsuregawa, Spec-
ulative lock management to increase concurrency
in mobile environments, First International Con-
ference, MDA’99, Hong Kong, Dcceinber 1999,
Lecture Notes in Computer Science, vol. 1748.,
pp. 81-95.

[191 P.Krishna Reddy and Masaru Kitsuregawa, Spec-
ulation to Increase the Concurrency of Nested
Transactions, proceedings of International Confer-
ence on Incormation Technology (CIT’99) 1999,
India.

[20] B.Liskov, Distributed computing in Argus, Com-
munications of ACM, 3 I , pp.300-312, 19x8.

1211 S.K.Madria, A study of the concurrency control
and recovery algorithms in nested transaction en-
vironment, The Cornputer Journal, vol. 40, no. 10,
pp.630-639, 1997.

[22] S.K.Madira, S.N.Maheswari, B.Chandra and B.
Bhargawa, Crash Recovery algorithm in open and
safe nested transaction model, Lecture Notes in
Coinputer Science, vol. 1308, 1997, pp. 440-45 1.

[23] J.E.B.Moss, Nested transactions: An approach to
reliable distributed computing. Cambridge, mass,
MIT Press. 1985.

E.T. Mueller, J.D.Moore, and G.Popek. A nested
transaction incchanism for Lotus. In proc. of 9th
ACM Symp. on Operating Systems Principles,
1983.

R.F.Rcsende, Synchronization in nested transac-
tions, Ph.D thesis, University of California, Santa
Barbara, 1994.

D.P.Reed, Naming and synchronimtion in a de-
centralized computer system. Ph.D thesis. Tcchno-
cal report MIT/LCS/TR-205, MIT Laboratory for
Computcr Science, MA.

K.Salem, H.Carciainolina and J.Shands, A h i s t i c
locking, ACM Transactions on Database Systerns,
vol. 19, no.1, March 1994, pp. 117.165.

(281 D. Shasha, F. Llirbat, E. Simon and P.Valduriez,
Transaction Chopping : algorithms and perfor-
mance studies, ACM Transactions on Database
Systems, 20(3), Sept. 1995, pp. 325-363.

305

