Scalable protocols for the Internet to Reduce
Service Time and Server Load

P. Krishna Reddy and Masaru Kitsuregawa,

Institute of Industrial Science
The University of Tokyo
7-22-1, Roppongi, Minato-ku
Tokyo 106, Japan
{reddy, kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract. In this paper, we have proposed scalable protocols for the
Internet to reduce service time and server load. In this approach, we as-
sume that a client cooperates by acting as a server to the cached web
pages. To reduce the service time, the server forwards the incoming re-
quests to other clients which have cached the web pages. As a result, the
service time scales well as server load increases. Also, with these proto-
cols, the traffic is evenly distributed among the network. This approach
is a generalization of caching technology. However, for implementation,
the proposed approach requires support from the Internet user, system
development, and governing communities. If adopted, we believe that the
proposed approach provides a scalable solution to the problems of server
overloading and long service times in the Internet.

1 Introduction

Currently, the World Wide Web (or Web) is experiencing exponential growth. In
coming ten years, billions of users will employ powerful computing and display
devices and try to pull multi-media information, which will put huge demand on
the corresponding servers and network links [1]. As a result, load on the popular
servers could increase in an unbounded manner. Also, the increasing use of the
Web results in increased network bandwidth usage, thus straining the capacity
of the networks on which it runs. As a result, it leads to more and more servers
becoming “hot-spot” sites where the high frequency of requests makes servicing
difficult. The best example is the case of many multi-media information servers
on the Internet, which are unreachable as soon as they become popular. The main
reason for this is current protocols for accessing distributed information systems
do not scale, partly due to the inability of servers to cope with the increasing
volume of client requests. Therefore the distributed large-scale, dynamic nature
of the Internet speaks to the need for open, flexible, and scalable solutions.

In this paper we propose a scalable approach to cope with the increasing
server load. The basic principle derives from client-peer architecture [2], where
each participating computing node is capable of both client and server roles. It
can be observed that the client-peer architecture is scalable because distributed
server can run on all nodes, and therefore server resources could scale with the



systems as a whole. That is each computer (new) shares the load and accesses
resources from other servers. In this paper we have tried to extend same idea
to Internet. In case of the Internet, it can be noticed that a client (user) caches
a large number of web pages and this information is not used once client scans
these pages. In the proposed approach, for the sake of improved performance,
a client cooperates by acting as a server to web pages cached by it. When a
server serves information to a client, the necessary information (i.e., details of
web pages served and client) is recorded in the cached page informer (CPI) of
the corresponding server. With the help of CPI, the server redirects incoming
requests to the client which has recently copied corresponding web page. In this
way, the server load could be reduced by distributing it among other clients.

Since the WWW suffers with the problems of high latency, network conges-
tion, and server overload, considerable effort has been spent investigating dif-
ferent methods to improve performance. The fundamental issues that have been
considered include cache topology, cache replacement policy, cache consistency,
whether caching is server- or client initiated, and cache-ability of different ob-
jects. There are two basic approaches to caching that have been explored: client
side and server side solutions. In the server side solutions, servers shed load by
duplicating their documents at caching servers spread throughout WWW [3, 6].
Client side solutions usually use some sort of caching proxy [7] that fields requests
from one or more clients and caches objects on the client’s behalf. However,
proxy caches are not always efficient. First, caching only works with statically
and infrequently changing documents. Dynamically created documents, which
are becoming more popular with commercial content providers, currently can
not be cached. Also, the effectiveness of client-based caching for WWW is lim-
ited. In [4] it was concluded that proxy-caching is ultimately limited by the low
level of sharing of remote documents amongst clients of the same site. These
findings agrees with Glassman’s predictions[10] and was further confirmed for
general proxy caching by Abrams et al [8].

In [5], the reasons for limited effectiveness of WWW client-based caching
are given. The access patterns in a WWW exhibit three locality of reference
properties: temporal, geographical and spatial. Temporal locality of reference
implies that recently accessed objects are likely to be accessed again in the
future. Geographical locality of reference implies that an object accessed by
a client is likely to be accessed again in the future by “nearby” clients. The
property is similar to the processor locality of reference exhibited in parallel
applications. Spatial locality of reference implies that an object “neighboring”
a recently accessed object is likely to be accessed in the future. If client-based
caching is done on a per-session basis (i.e., the cache is cleared at the start of
each client session), then the only locality of reference property that could be
exploited is the temporal locality of reference. The results of client based caching
study [3] suggest that for a single client, the temporal locality of reference is quite
limited, especially for remote documents.

In [9] a protocol that allows multiple caching proxies to cooperate and share
their caches, thus increasing their robustness and scalability. Our approach dif-



fers from this as in our approach the clients or proxies do not communicate
with each other. Our approach is a generalization of “caching” technology to in-
crease Internet performance. Using the proposed approach, both temporal and
geographical locality of references could be exploited to reduce server load and
service time.

The rest of the paper is organized as follows. In the next section we explain
the architectural framework and present server and client protocols. In section
3, we discuss the design issues and advantages. In the last section we provide
conclusions.

2 Architectural framework and protocols

In this paper we refer user’s machines that access the Internet as clients and
computers that provide information as servers. The URL (Uniform resource lo-
cator) uniquely identifies a Web page. A web page may be an HTML text file,
image file, sound file or video file or combination of all these.

Figure 1 depicts the proposed architecture. In this architecture, each server
maintains the CPI database. The received URL requests are stored in the server
queue. These URLs are served as per the server protocols, which will be explained
later. When a server serves a page, the information such as URL of the page,
client address, page size is stored in the CPI database. To reduce the load, the
server redirects the URL requests to the corresponding clients which cached
these pages. Therefore, from the server, a page is either directly transferred to
the target client or its URL request is forwarded to other client which has cached
the corresponding page, which would in turn transferred to the requested client.

Server

Through

Clients %‘ Server's queue

Through
Internet
hrough Internet

Through Internet

Clients
with cached

pages

Figure 1: Depiction of architecture

2.1 Simple protocols

We first present client and server protocols under simplified assumptions. Next,
we explain drawbacks of these protocols and present final protocols. We assume
that each server maintains a CPI database. Also, url; denotes the URL of the
i’th page and page_size; denotes the size of the page pointed by url;.

We make following assumptions for simple protocols.



— All the requests sent by a server reaches to client.

— All pages received by a client are cached by the client. For this purpose we
assume that unlimited memory is available at the client.

— A client is up around the clock.

Simple client protocol

1. To access a web page, a client sends wurly to the corresponding server.

2. On receiving a web page, a client caches it.

3. When a client receives a request from the corresponding server to serve the
cached page, it sends the page to the client specified by the server.

Simple server protocol

All the client’s requests are stored in the server’s queue. Initially, CPI contains
no information.

1. For each URL request urly in the server queue, CPI database is checked. If
urly € CPI the page is sent directly to the requested client after entering
the information < wrly, client_id, page_sizey,creation_times > in CPL (In
this client_id, indicates the address of the client which has requested the
web page urly. The variable creation_time;, specifies the instant when the
web page urly, was created at the server. This variable is used to determine
whether the cached version has become obsolete or not.)
2. Otherwise, the request is forwarded to the client which has cached the page
urly after entering the information < urly, client id, page_sizey, creation_timey >
in the CPIL.

2.2 Limitations of simple protocols

We now explain the limitations of simple protocols and propose improvements
to overcome them.

— Server performance
In simple protocol, a server always redirects the URL requests to those clients
which have cached these pages. When the performance is OK, following pro-
posed protocols indeed deteriorates performance by increasing service time.
In fact, the proposed solution is effective in situations when the server’s per-
formance is unacceptable. We define variable ‘threshold service time (TST)’
to separate server’s mode of operation. The variable T'ST denotes maxi-
mum mean service time at which the server’s performance is acceptable. If
the service time exceeds T'ST, we say the server performance is slow and
unacceptable.

— Page size
The simple protocols do not take the page size into consideration. It is ob-
vious that the request redirected by a server travels first to the client which
has cached it and then to the target client. Therefore it travels more distance



than the distance from the server to the client. This results in an overhead if
the server depends on the clients to serve even small pages. However, if page
is large enough, the overhead caused by longer distance could be nullified
by utilizing the server time to process other requests. Obviously it would be
efficient if small pages are directly served by a server. To facilitate this, we
define a variable threshold page size (TPS). If the page size exceeds TPS, the
server tries to request the clients to serve the corresponding page.

Rejections

When a server redirects request to other clients that has cached a web page,
the request might not reach the client. Even though it reaches, the client
might not oblige the request. Because the redirected request could not have
reached the client due to transmission failures or the client’s computer might
be down. The simple protocol does not consider the possibility of such re-
jections. We incorporate the handling of rejections in the improved protocol
as follows.

We assume a page could be cached either by a client or by a proxy server/ISP.
This information is sent by a client machine when it sends URL request to
the server. We assume that a client operates at least for some duration which
is termed as a threshold operating time (TOT). Otherwise, if a client (proxy
server or ISP) which operates around the clock caches pages, it has to follow
cache management mechanisms to accommodate new pages by deleting old
pages[11]. We term the duration of cached page as an ‘age’ of the page. We
define the term ‘threshold age (TA)’, which specifies the maximum duration
the client keeps in a cache. If age exceeds TA, the client deletes the page.
The variables TOT and TA could be fixed in an adaptive manner.

If a redirected request could not reach the client which has cached the web
page, corresponding error message is received by the server which has redi-
rected the request. In this situation the server has to handle the rejected
requests in a prioritized manner and therefore should be served by the server
itself. So, in the improved protocol we maintain two queues for a server. One
is ‘normal queue’ in which all the client’s URL requests are stored. And the
other is ‘priority queue’ where those requests which could not be served by
the clients (cached) are stored.

CPI entry for rejected requests

The simple protocols assume that the clients always cache web pages sent
by the server with out fail. Since the client could reject the request, this
assumption is invalid unless the target client confirms the receipt. So, we
incorporate boolean variable con firm in the entry of CPI. Initially, the con-
firm is no, when the client acknowledges the receipt of the page the confirm
is set to yes.

Caching by multiple clients

It can be observed that if multiple clients request a page within a short
duration, it would be cached at multiple clients. In this case when a server
receives a request from a client, it has to select appropriate client among mul-
tiple clients to forward a request. We assume that given two server addresses,



distance between them can be calculated through appropriate protocol. The
distance may be a function of bandwidth of the weakest link, number of
hubs, transmission time between the two and so on. By knowing distance,
when multiple clients cache a web page, the server forwards the incoming
URL request to the client which is nearer to the target client.

2.3 Protocols

We now present final protocols by incorporating the improvements discussed in
the preceding section.

Client protocol

1.

When a client sends the URL request, it sends the identifier of the machine
which would cache that page. (It may be either identifier of the client or
proxy server/ISP.)

. When a client receives a request from the corresponding server to serve the

cached page, it sends the page to the client specified by the server. When a
client receives a web page it caches that page and sends the acknowledgment
to the original server.

. When a client receives a request from the corresponding server to serve the

cached page, it sends the page to the client specified by the server.

. For a page, if the age exceeds TA (or TOT) it is deleted from the client’s

cache.

Server protocol It is to be noted that we maintain two queues for a server :

priority queue and normal queue (see section 2.2).

1.

2.

3.

If the request is from a priority queue, send the page to the requested client

after step 6.

If the request is from a normal queue and mean service time < TST send

the page to the requested client after step 6.

If the request is from a normal queue and mean service time > T'ST the

following actions are performed.

(a) For each urly in the input queue if page_sizer, < TPS send the page to
the requested client.

(b) For each urly in the queue, if page_size, > TPS,

i. If urly € CPI and confirm = yes and age(urly) < TA (or TOT)
and cached page is not obsolete, the request is redirected to the
corresponding client that has cached wrl, after performing actions
in step 6. (If multiple clients cache urly the request is redirected to
the client that is nearer to the requested client)

ii. Otherwise, the page is directly sent to target client after step 6.

. For any wrly, if age(urly) > TOT (age(urly) > TA) the entry is deleted
from CPI.
. If a server receives acknowledgment from the requested client, it updates

corresponding CPI entry field as “con firm = yes”.



6. Suppose the request is for urly. If page_size(urly) > TPS, then < urly, client_id,
page_size(urly), creation_timey,confirm = no > is entered in the CPI
database.

3 Design issues and advantages

3.1 Design issues

In the proposed approach, we assume that a client serves the pages it has cached.
This requires inclusion of serving capability to the Internet browsers. If some
other server (proxy/ service provider) provides caching facility for a client, this
should be indicated in the client’s request so that the Server could redirect
requests to proxy server. This requires modification of browser protocols and
data request format.

Also, the proposed approach requires cooperation from web community (user,
system development and governing communities) for its realization. Already,
proxy servers and mirrors are employed to reduce the server load. The proposed
solution is a more generalized notion of a proxy server technology, providing
opportunity to every client to cooperate in reducing the server load.

3.2 Advantages

— The implementation of proposed protocols is simple and modular. It is sim-
ple because implementation does not lead to major changes in the existing
architecture. Also, it is modular because the server can implement the pro-
posed protocols even if a single client cooperates in serving the cached pages.
The server protocols could be extended gradually to other clients.

— It is a fully scalable solution. As the server load increases, the number of
clients that cache the data increases. Therefore, increasing number of re-
quests are forwarded to clients. With respect to server’s point of view this
substantially reduces its load. Also, with respect to client’s point of view the
load imposed on it is very very less. As a consequence, the service time and
server load could be considerably reduced without burdening the clients.

— The proposed solution balances the traffic over the entire network. In this
approach the clients exchange pages. As clients span over wide area, the
corresponding load is also distributed among the network, which increases
the link usage.

— If every client cooperates, more load could be served with less powerful
architecture. So large amounts of load can be served with less expensive
server architectures.

4 Conclusions

In this paper we have proposed scalable server and client protocols to reduce ser-
vice time and server load in the Internet environment. In this approach, we have



assumed that a client cooperates by serving pages cached by it to other clients
as directed by original server. With this approach the service time can scale well
with the increasing server load. Also, this approach distributes the load evenly
among the network. However, the proposed approach requires modification of
protocol format, inclusion of a server functionality to existing Internet browsers
and support from Internet community for its implementation. Currently, caching
technology is employed to reduce the service time and server load. The proposed
solution is a generalization of caching technology. As a part of future work, we
will evaluate the performance through simulation experiments and then conduct
the experiments on the Internet.

Acknowledgments
This work is supported by “Research for the future” (in Japanese Mirai Kaitaku) under
the program of Japan Society for the Promotion of Science, Japan.

References

1. Phil Bernstein et. al., The asilomar report on database research, ACM SIGMOD
RECORD 27(4), 1998.

2. Thomas E.Anderson, Michael Dahlin, jaenna M.Neefe, David A Patterson, drew
S.Roselli, and Randolph Wang. Server-less network file systems. ACM Transactions
on Computer Systems, 14(1):41-79, February 1996.

3. Azer Bestavros, Using speculation to reduce server load and service time on the
WWW, proc. of ACM Fourth International Conference On Information and Knowl-
edge Management (CKIM’95), 1995, 403-410.

4. Azer Bestavros, Robert Carter, Mark Crovella, Abdelsalam Heddaya, and Su-
laiman Mirdad. application level document caching in the internet. In IEEE
SDNE’96: The second International Workshop on Services in Distributed and Net-
worked Environments, June 1995.

5. Azer Bestavros and Carlos Cunha, Server initiated document dissemination for the
WWW. IEEE Data Engineering Bulletin, 19(3):3-11, September 1996.

6. T.T.Kwan, R.E.McGrath, and D.A.Reed. NCSA’s world wide web server : design
and performance. IEEE Computer, 28(11):68-74, November 1995.

7. A.Luotonen and K.Altis. Worl-Wide Web proxies. Computer Networks and ISDN
Systems, 27(2), 1994. jURL: http://wwwl.cern.ch/ PapersWWW94/luotonen.ps;,

8. Marc Abrams, Charles R.Atandridge, Ghaleb Abdulla, Stephen Williams, and Ed-
ward A. Fox. Caching proxies: limitations and potentials. In proceedings of the
Fourth International Conference on the WWW, Boston, MA, December 1995.

9. Radhika Malpani, Jacob Lorch and David Berger, Making world wide web caching
servers cooperate. In 4th International world wide web conference, pages 107-117,
Boston, Dec. 1995.

10. Steven Glassman. Acaching relay for the worl wide web. In proceedings of the first
International Conference on the WWW, 1994.

11. S.Williams, M.Abrams, C.R.Standridge, G.Abdulla, E.A.Fox. Removal policies in
network caches for Worl-Wide Web documents. ACM SIGCOMM, 1996, pp. 293-
305.

This article was processed using the INTEX macro package with LLNCS style



