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ABSTRACT
This paper presents an ongoing Ph.D. thesis work which aims at 
improving the performance of read-only transactions (ROTs) in 
database systems using the notion of speculation. In the literature,
speculative locking approach has been proposed to improve the 
transaction processing performance in online transaction 
processing environments. In this thesis, we have proposed two 
protocols to improve the performance of ROTs, by making 
appropriate modifications to the existing speculative locking 
protocol. The proposed protocols process ROTs without any data 
currency and correctness issues. The simulation results show that
the proposed protocols improve the throughput performance 
significantly over two-phase locking (2PL) and snapshot isolation 
(SI)-based approaches with manageable extra processing 
resources.

Advisor:   P. Krishna Reddy

1. INTRODUCTION
In the emerging web databases and e-commerce scenario, 
information systems should meet intensive information 
requirements from a large number of users. The information
systems frequently process read-only transactions (ROTs) or 
queries. In such systems, the ROTs should be processed with 
acceptable response time without any correctness and data 
currency issues. Research efforts are being made in the literature
to investigate the approaches to improve the performance of 
ROTs. As a part of Ph.D. thesis work, we are addressing this 
problem and proposing speculation-based protocols to improve 
the performance of ROTs.

A read-only transaction (ROT) does not modify any data. The 
main issues in processing ROTs are correctness (serializability), 
data currency and performance. The widely used two-phase 
locking (2PL) protocol [1][2] processes ROTs with serializability 
as correctness criteria. However, it performs poorly as data 
contention increases due to increased waiting. In the literature, 
there are efforts to improve the performance by processing ROTs 
with a  multi-version based approach [11], at  lower isolation 
levels [3] and  by  proposing separate protocols for ROTs and 
update transactions [10][11]. Snapshot Isolation (SI)–based 
methods [3] are widely used to process ROTs. Even though, SI-
based approaches improve performance, they compromise on the 
aspects of both data currency and correctness (serializability). 

**

We briefly explain about data currency. The aspect of data 
currency is discussed for a data warehousing environment in [6] 
and for a replicated environment in [19]. The term “data 
currency” refers to how current or up-to-date system can 
guarantee a data object to be, for a transaction. Based on this, we 
define data currency for DBMS environment as follows. Let Ti

and “t” denote a transaction and time duration, respectively. The 
data currency of the data object provided to Ti is the value of “t” 
which is the time difference between the commit time of the 
transaction which created the latest version of the data object and 
the commit time of the transaction which created the version of 
that data object that was read by Ti. If “t” is less/more, it means 
that transactions are provided with high/low data currency.

In the literature, a speculative locking [SL] protocol [7] is 
proposed to improve the transaction processing performance in 
distributed database systems. In SL, a transaction carries out 
multiple executions by accessing the uncommitted values 
produced by the preceding transactions. The SL protocol is 
proposed to improve the transaction processing performance of 
OLTP environment by considering transactions which contain 
both the read and write operations. Through SL, the performance 
can be improved by trading extra processing resources without 
violating serializability criteria.

As a part of Ph.D. thesis, we are making efforts to develop 
speculation-based protocols to improve the performance of ROTs 
in database environment which processes both the ROTs and 
update transactions (UTs).  We have proposed speculative 
protocols to improve the performance of ROTs by making 
appropriate modifications and extensions to SL through 
identifying features specific to ROT processing environments. As 
a result, there is an opportunity to improve the performance by 
processing ROTs with few speculative executions as compared to 
SL [7]. The proposed modifications result in two protocols for 
ROTs. One is synchronous speculative locking protocol [8] and 
another is asynchronous speculative locking protocol [20]. 

Using the proposed protocols, ROTs can be processed with high 
performance and without any data currency and correctness 
issues. The simulation results under limited resource 
environments show that these protocols improve the performance 
significantly over the other approaches including 2PL and SI-
based approaches by adding a fraction (0.2 times) of additional 
resources.  
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1.1 System Model
A Transaction is a particular execution of program that 
manipulates the database by means of read and writes operations 
[17]. A transaction can read a set of data objects from the database 
which forms the read-set (RS) of the transaction and modify the 
values of another set of data objects which forms the write-set 
(WS) of the transaction. The transactions Ti   and Tj   are said to 
have a conflict, if RS(Ti) ∩  WS(Tj) ≠ Ø,  or WS(Ti) ∩ RS(Tj) ≠ Ø 
or  WS(Ti)  ∩  WS(Tj) ≠ Ø. An ROT does not contain write 
operations and a UT includes both read and writes operations. The 
database management systems support components like 
transaction manager and data manager [17]. The transaction 
manager supervises the processing of transactions, while the data 
manager manages the individual databases.

We explain here some notations. Data objects are denoted with 
‘x’,’y’, … Transactions are represented with  Ti, Tj,… . For the 
data object ‘x’, ‘xi’ (i = 0 to n) represents ith version of ‘x’.  The 
notation ri[xj] indicates that read operation is executed on ‘xj’ and 
wi[xj] denotes that write operation is executed on a particular 
version of ‘x’ and as a result  ‘xj’ is produced. The notations, ‘s’, 
‘c’ and ‘a’ depict the start, commit and abort of transactions. Tij

indicates jth speculative execution of Ti.

1.2 Paper Organization
The rest of the paper is organized as follows. In the next section, 
we discuss the state of the art and open problems in processing 
ROTs. In section 3, we explain the speculative locking protocol. 
In section 4, we explain the basic idea of SSLR and ASLR 
protocols, the proof of correctness and the performance evaluation 
results. In section 5, we discuss how the proposed protocols differ 
with the SL approach proposed in [7]. In section 6, we discuss 
about the implementation issues. The last section contains a 
summary and conclusions.

2. PROCESSING OF ROTS: STATE OF 
ART AND OPEN PROBLEMS

As a part of state of art, we first present the related work. Next we 
discuss the two main protocols, 2PL and SI-based approaches 
related to processing of ROTs. Subsequently, we discuss the open 
research problems.

2.1 Related Work
In this section, we review the approaches proposed in the 
literature for improving the performance of ROTs. We also 
discuss the approaches based on speculation.

Four isolation levels are specified in ANSI/ISO SQL-92 standard 
[9] for processing transactions. These isolation levels are read 
uncommitted, read committed, repeatable read, and serializable. 
The processing of transactions is considered as correct if they are 
processed at serializable isolation level. The popular 2PL protocol
[1][2] processes ROTs at serilaizability isolation level. Even 
though 2PL processes ROTs correctly with no data currency 
related issues, the performance deteriorates as data contention 
increases. We consider strict 2PL [17] for discussion and 
comparison.

To improve performance of ROTs, a new isolation level called 
“Snapshot Isolation (SI)” was proposed in [3].  (Pease refer to 
section 2.2 for details). Note that ROTs processed at SI violate the 
serializability criteria and receives low data currency.  

In [4], a theory is discussed to convert non serializable executions 
under SI into serializable executions by modifying the program 
logic of the applications. However, this approach requires 
programmers to detect the static dependencies between the 
application programs and to modify the program which will lead 
to a semantically equivalent application program that can be 
executed correctly without violating serializability criteria. In [5], 
automating the task of modifying the program logic to satisfy the 
serializability criteria is discussed. 

An approach has been proposed in [10] for distributed 
environment, in which ROTs are processed with a special 
algorithm that is different from the one used for UTs. A protocol 
is proposed in [11] for managing data in a replicated multi-
version environment. In this protocol, the execution of ROTs is 
completely independent of the underlying concurrency control 
and replica control mechanisms. In [12], an approach has been 
discussed by maintaining multiple versions of data objects. In the 
dual copy method proposed in [13], ROTs are separated from 
UTs. 

Speculation has been extended in [14] to optimistic protocol for 
improving the deadline performance in centralized real-time 
environments.  In [7], speculation has been extended to improve 
the performance of distributed database systems (please refer to
section 3 for details) by considering transactions which contain 
both the read and writes operations. 

The approaches proposed so far (other than speculation 
approaches), improve the performance of ROTs by compromising 
data currency. We have proposed approaches to improve both the 
performance and data currency of ROTs by extending the notion 
of speculation.   

2.2 2PL and SI-based protocols
The 2PL protocol is widely deployed in DBMS for transaction 
management and SI-based protocols are widely deployed to 
process ROTs. In this section, we explain how these protocols 
process ROTs.

2.2.1 Processing of ROTs in 2PL
Under 2PL [17], a transaction obtains “read (R) lock” to read an 
object and a “write (W) lock” to write/update the data object. In 
2PL, a transaction should obtain all the required locks before 
performing any unlock operation. We have considered a variation 
of 2PL called “strict two-phase locking protocol” [17]. The strict 
2PL scheduler releases all of a transaction’s locks together, when 
the transaction terminates. 

The lock compatibility matrix for 2PL [17] is shown in Figure 1. 
A transaction can request for Read (R)-locks or Write (W)-locks. 
Once a transaction releases locks, it cannot request for any more
locks. The entry “yes” indicates that corresponding locks are 
compatible. The entry “no” indicates that the corresponding locks 
are incompatible.  The processing of ROTs under 2PL is depicted 
in Figure 2. T2, which is an ROT, has to wait for lock on the data 
object ‘x’ until T1 commits due to read-write conflict. Similarly, 
T3 which is a UT has to wait for lock on ‘y’ till T1 commits due to 
write-write conflict. 



      

  Figure 1.  Lock Comaptibility  Matrix for 2PL
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    Figure 2. Depiction of Transaction Processing  with 2PL

2.2.2 Processing of ROTs with SI-based protocols
The performance of ROTs can be improved by processing them at 
lower isolation levels by compromising both the correctness and 
data currency [3]. To improve the performance of ROTs, a new 
isolation level called “Snapshot Isolation (SI)” was proposed in 
[3]. In SI-based techniques, an ROT reads data from the snapshot 
of the (committed) data available when the transaction started or 
generated the first read operation. The modifications performed by 
other concurrent UTs which have started their execution after the 
ROT (Ti), are unavailable to Ti.  

A variation of SI-based protocol called “First Committer Wins 
Rule (FCWR)” works as follows. Let Ti and Tj be UTs. Ti can 
successfully commit if and only if no concurrent Tj has committed 
writes of data objects that Ti intends to write. The processing of 
ROTs using FCWR is depicted in Figure 3. Both T1 and T3 are 
UTs, and T2 is an ROT. It can be observed that T2 reads the 
currently available values ’y0’ and ’z0’ and proceeds with the 
execution. As T1 commits, T3 has to be aborted as per the FCWR. 
It can be noted that T2 commits with the old values and it has not 
accessed the updates produced by T1 even though T1 commits 
before its completion. It can be observed that T2 has missed the 
updates produced by T1 and thus violates the serializability 
criteria.

Note that ROTs processed at SI violate serializability criteria and 
receive low data currency [4]. A theory is discussed in [4], which 
characterizes when non-serializable executions of applications can 
occur under SI. It is shown in [4] that by modifying the logic of 
the application program, it is possible to make SI serializable.  In 
[5], automating the task of modifying the program logic to satisfy 
the serializability criteria is discussed.   

2.3 Open Problems 
The main issues regarding processing of ROTs are correctness, 
data currency and performance. Even though 2PL processes ROTs 
correctly with no data currency related issues, the performance 
deteriorates as data contention increases. On the other hand, SI-
based techniques improve the performance by compromising both 
correctness and data currency.  So, the development of high 

performance protocol to process ROTs without any correctness
and data currency issues is a open research problem.

In this thesis work, we have made an effort to develop high 
performance protocols without any correctness and data currency 
issues.  
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Figure 3.  Depiction of Transaction Processing  FCWR

3. SPECULATIVE LOCKING PROTOCOL
In [7], speculation has been extended to 2PL for improving the 
transaction processing performance. In a database system, 
whenever a transaction Ti reads data objects, these objects are 
copied into the private working space of that transaction. It was 
assumed that  Ti issues wi[x] (write request on the data object ‘x’) 
after completing all its work on data object ‘x’. This assumption is 
also adopted in [15] [16]. 

In the speculative locking (SL) protocol [7], a transaction 
produces after-images whenever it completes the work with that 
object. A waiting transaction is allowed to access the after-images 
produced by the conflicting active transactions.  By accessing 
both before- and after-images of conflicting active transactions,
the waiting transaction carries out multiple speculative executions 
and retains one of the executions based on the termination status 
of preceding transactions. The requesting transaction forms 
commit dependencies with the preceding transactions; it commits 
only after the termination of preceding transactions with which it 
has formed commit dependencies. 

Figure 5 depicts the processing of transactions with SL. Tij

indicates jth (j > 0) speculative execution of Ti. It can be observed 
that T2 starts speculative executions T21 and T22, once T1 produces 
the after-image ‘x1’.  T21 is carried out by reading ‘x0’ and T22  is 
carried out by reading ‘x1’. Here, T2 forms commit dependency 
with T1; It means T2 can only commit after T1’s termination. If T1

commits, T2 also commits by retaining the execution T22. 
Otherwise, if T1 aborts, T21 is retained. Note that speculation 
improves parallelism among T1 and T2. We can observe that the 
speculative executions of T2 are started in a synchronous manner. 

Lock compatibility matrix of SL is shown in Figure 4. Here the 
W-lock is partitioned into two locks: exclusive write (EW)-lock 
and speculative write (SPW)-lock. Transactions request R-lock for 
read and EW-lock for write. When a transaction produces after-
image for a data object, the EW-lock is converted into SPW-lock. 
Under SL, only one transaction holds an EW-lock on a data object 
at any time.  However, note that, multiple transactions can hold 
the R and SPW-locks on a data object at the same time. The entry 
“sp_yes” indicates that the requesting transaction carries out 
speculative executions and forms commit dependencies with the 
preceding transactions that hold SPW-locks. SL ensures 

        Lock Held by TjLock Request 
by Ti R W

R yes No

W no No



serializability by making transactions to wait by forming a commit 
dependency.  

            Figure 4.  Lock Comaptibility Matrix for SL
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Figure  5. Depiction of  Speculative Transaction Processing 

In SL, at a time, a data object may have multiple versions which 
are organized using tree data structure with one committed value 
(at the root) and uncommitted values at other nodes. Whenever a 
transaction executes a write operation by reading a particular 
version (‘xi’), new object versions are created and are added as 
children to the corresponding node (‘xi’). 

A family of SL protocols, SL(n), SL(1) and SL(2)  are proposed 
in [7]. Through simulation experiments, it has been shown that SL 
improves the performance significantly over 2PL by trading extra 
resources. Also, SL protocol produces serializable executions.

4. CONTRIBUTION OF THE THESIS 
The contribution of this Ph.D. thesis is the development of two 
speculation-based protocols. One is synchronous speculative 
locking protocol for ROTs (SSLR) and the other is asynchronous
speculative locking protocol for ROTs (ASLR). In this section, we 
first present the basic idea of both protocols. Next, the proof of 
correctness is discussed. Subsequently, we present the 
performance evaluation results.

4.1 Synchronous Speculative Locking 
Protocol

The SL protocol [7] was proposed to process UTs; i.e., the 
transactions that contain both read and write operations. In that 
protocol, at a time, a data object may have multiple versions 
which are organized using a tree data structure. Whenever a 
transaction executes a write operation, new uncommitted object 
versions are created and added to the corresponding object trees. 
It can be observed that write operations result in  the generation of 
new uncommitted versions. Also, SL allows several UTs to have a 
SPW-lock.  As a result, the number of versions for contentious 
data objects, and the number of speculative executions of the 
transactions explode with the increase in data contention. It can be 
noted that more extra processing power is required to support the 
increased number of speculative executions and data object 
versions.

However, regarding processing of ROTs,  it can be observed that 
an ROT only reads the existing data and does not generate any 
new versions. So, if we process only ROTs through speculation, it 
is possible to improve the performance with less extra processing 
resources as compared to the resources used for processing UTs
and ROTs with speculation. The explanation is as follows.

Suppose we apply SL to ROT environments which contains both 
ROTs and UTs. Each UT obtains EW-lock and reads the after-
images produced by preceding transactions and produces new 
uncommitted images and converts EW-lock into SPW-lock. This 
allows other waiting transactions to get EW-locks.  So under SL, 
several UTs can have SPW-lock on the same data object which 
causes the explosion of data object versions. As a result, the 
waiting transactions including ROTs have to carry out increased 
number of speculative executions as they conflict with all the 
transactions which have obtained SPW-locks on the common 
conflicting data objects. 

It can be noted that a UT reads before-images and produces after-
images and an ROT only reads before-images and does not 
produce any after-images. If we process only ROTs with 
speculation and UTs with 2PL, the number of speculative 
executions can be reduced due to the following reasons. When we 
process UTs with 2PL, only one transaction holds EW-lock at any 
time.  If one UT is accessing a data object, other UTs have to wait. 
As a result, the number of versions for any data object never 
exceeds two.  So an ROT can have conflict with only UTs which 
have accessed the common data objects.  As a result, it is possible 
to reduce the number of speculative executions if we process only 
ROTs with speculation and UTs with 2PL.

The synchronous speculative locking for ROTs (SSLR) is 
proposed by adding two aspects to the basic SL protocol.      

a) In SSLR only ROTs are processed with speculation. 
The UTs are processed with 2PL. We assume that a UT 
releases the locks (converts EW-lock into SPW-lock) 
whenever it produces after-images. Whenever an ROT 
conflicts with a UT, it carries out speculative executions 
by accessing both before- and after-images of the 
preceding UTs. 

b) The other aspect is regarding the commitment of ROTs. 
In the SL [7], a waiting transaction carries out 
speculative executions and waits for the commitment of 
preceding transactions. Whereas, in SSLR whenever 
ROT completes execution, it commits by retaining 
appropriate execution. In SSLR an ROT does not wait 
for the termination of conflicting active transactions. 
However, it can be noted that, a UT waits for the 
termination of preceding UTs and ROTs.                                                        

The lock compatibility matrix of SSLR is shown in Figure 6. 
Similar to the case of speculative locking, W-lock is divided into 
EW-lock and SPW-lock. UTs request EW-lock for writing the 
data object. The EW-lock is converted into SPW-lock after the 
work on the data object is completed. Separate read-locks are 
employed for UTs and ROTs. A UT requests for RU-lock (read 
lock for UT) to read a data object and an ROT requests for RR-
lock (read lock for ROT) to read a data object. The entry “sp_yes” 

       Lock Held by TjLock Request 
by Ti R EW SPW

R yes No sp_yes

EW sp_yes No sp_yes



indicates that the requesting transaction carries out speculative 
executions and forms commit dependency with the lock holding 
transaction.  In [8], SSLR is discussed in detail.

            Lock Held by TjLock Request  
by Ti RR RU EW     SPW

RR yes  yes no sp_yes

RU yes  yes no no

EW no   no no no

             Figure  6. Lock Comaptibility Matrix for SSLR

It can be noted that the formation of commit dependency among 
transactions in SSLR is different from that of SL.  Let Ti be an 
ROT and Tj be a UT. Suppose Ti forms a commit dependency 
with Tj. In SL, Ti commits only after the termination of Tj. 
Whereas in SSLR, whenever Ti completes, it can commit by 
retaining one of the speculative executions without waiting for Tj

to terminate. 

Figure 7 depicts the processing under SSLR. Here, T2 is an ROT 
and T1 and T3 are UTs. Whenever T1 produces after-image ‘x1’, T2

accesses both ‘x0’ and ‘x1’ and carries out two executions T21 and 
T22, respectively. After T2’s completion, T21 is retained even 
though T1 is not yet committed. Note that, being a UT, T3 waits 
for T1 for the release of the lock on ‘x’ as per 2PL rule.  
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      Figure  7. Depiction of Transaction Processing with SSLR

4.2 Asynchronous Speculative Locking 
Protocol

Note that we can process ROTs in two ways by employing 
speculation. One is synchronous speculation in which an ROT 
waits till the preceding transaction produces after-image. It means 
that all the speculative executions of an ROT progress at the same 
pace and complete at the same time. For example, in Figure 5, T2

starts speculative executions when T1 produces x1. With this 
option, the SSLR protocol is proposed.   

Alternatively, the speculative executions of ROTs can be 
processed in an asynchronous fashion. The basic idea is as 
follows. The speculative executions of an ROT can be carried out 
in an independent manner. The ROT is allowed to access the 
available data object versions and carry out the speculative 
executions. Whenever preceding transaction produces after-image, 
further speculative executions can be started in a dynamic manner. 
The asynchronous method of processing ROTs reduces waiting 
and improves the performance. We call the proposed protocol as 
asynchronous speculative locking protocol for ROTs (ASLR). In 
[20], ASLR is discussed in detail.

Figure 8 depicts the processing under ASLR. Here T2 accesses the 
before-image ‘x0’ and other available values of data objects ‘y0’ 
and ‘z0’ and starts speculative execution T21. Once the after-image 
‘x1’ becomes available, another speculative execution T22 is 
started. Note that T21 and T22 are executed in a parallel manner.
Whenever the processing is completed for any one of the 
speculative execution the ROT can be committed, provided it 
contains the effect of committed transactions at that instant. Note 
that being UT, T3 waits for T1 for the release of the lock on ‘x’ as 
per 2PL rule.   

The lock compatibility matrix of ASLR is shown in Figure 9. 
Similar to the case of speculative locking, W-lock is divided into 
EW-lock and SPW-lock. The UTs request EW-lock for writing 
the data object. The EW-lock is converted into the SPW-lock after 
the work on the data object is completed. We propose separate 
read-locks for UTs and ROTs. A UT requests RU-lock (read lock 
for UT) for reading a data object and an ROT requests RR-lock 
(read lock for ROT) for reading a data object. 
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Figure  8. Depiction of Transaction Processing with ASLR

Lock Held by Tj    Lock 
Request by 

Ti
RR RU EW SPW

RR yes yes sp_yes sp_yes

RU yes yes no no

EW no no no no

      Figure  9.   Lock Compatibility Matrix for ASLR.  

4.3 Correctness
We briefly argue that the schedules produced by ASLR are 
serializable [17]. Under SSLR and ASLR, the UTs are handled 
using 2PL rules which capture all Read-Write and Write-Write 
conflicts. The SSLR and ASLR rules capture all the Write-Read 
conflicts. For each Write-Read conflict, SSLR and ASLR rules 
ensure that Read operation reads from the preceding Write 
operation.  Suppose, let Ti be an ROT and conflicts with “n” 
transactions and commits at time “t”. We can divide “n” 
transactions into two sets.  One set is “committed set (CS)” which 
includes the transactions which have committed before “t” and 
another set is “uncommitted set (US)” which includes the 
transactions which are not committed at time “t”.  As per SSLR 
and ASLR rules, Ti is committed by including the effects of all the 
transactions in CS.   So, Ti’s execution is equivalent to the serial 
execution produced after CS.  The execution of each transaction 
in US is equivalent to the serial execution after Ti.  It means that 



the execution is equivalent to the serial order CS << Ti << US 
(“<<” denotes the partial order).  So, it can be easily proved that 
SSLR and ASLR produce serializable schedules.

4.4 Performance Evaluation
In this section, first we discuss the simulation model and 
protocols considered for comparison briefly. Next we present the 
evaluation results by considering both unlimited and limited 
resource environments.

      Table 1.   Simulation Parameters, Meaning and Values   

Parameter Meaning Values

dbSize Number of objects in 
the database

1000

cpuTime Time to carry out CPU 
request

5ms

ioTime Time to carry out I/O 
request

10ms

rotMaxTranSize Size of largest ROT 
transaction

20 objects

rotMinTranSize Size of smallest ROT 
transaction

15 objects

utMaxTranSize Size of largest UT 
transaction

15 objects

utMinTranSize Size of smallest UT 
transaction

5 objects

noResUnits Number of RUs( 1 
CPU, 2 I/O )

8

mpl Multiprogramming 
Level (10 – 100)

Simulation 
Variable

A discrete event simulator based on a closed-queuing model has 
been developed based on [18]. The   description of parameters 
used in the simulation with values is shown in Table 1. We have 
employed throughput as the performance metric which can be 
defined as the number of transactions completed per second. 

Protocols: We have compared SSLR and ASLR with 2PL, 
FCWR, SI-2PL, and SL. In 2PL, SL, SSLR and ASLR 
transactions request for locks in a dynamic manner, one by one. 
For SL, SSLR and ASLR, we have assumed that all the 
speculative executions of a transaction are carried out in parallel. 
In FCWR, the conflicts between UTs are managed by aborting the 
transactions. Aborted transactions are resubmitted after the time 
duration which equals to the average response time. We also 
consider SI-2PL approach. SI-2PL is a variation to the approach 
proposed in [11][12]. In SI-2PL, ROTs are processed with 
snapshot isolation and UTs are processed with 2PL.       

(i)  Results under unlimited resources
Figure 10 shows how throughput performance for 2PL, FCWR, 
SL, SSLR, ALSR and SI-2PL vary with MPL. It can be noted that 
the performance of ASLR is significantly higher than that of 2PL 
and FCWR. 2PL performs poorly as the waiting time of the 
transactions is more. In FCWR, the performance deteriorates due 
to its “first committer wins rule” as more number of UTs gets 
aborted as data contention increases.  Note that ASLR’s 
performance is better than both SL and ASLR due to the reduced 

waiting as a result of asynchronous speculation. Note that in both 
SL and SSLR,  ROTs wait for the lock conversion from EW-lock 
to SPW-lock.  We observe that the performance of SL and SSLR 
is close.  Also, it can be observed that the performance of ASLR 
is more than that of SI-2PL when contention increases. (Note that 
both SI-2PL and FCWR suffer from correctness and data currency 
problems.)    
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                       Figure 10.  MPL versus Throughput

(ii)  Results under limited resources 
Figure 11 shows the performance of 2PL, SL, SSLR and ASLR 
protocols by simulating limited resources environments.  The 
resources are allocated in terms of memory units (MUS). We 
assumed that each memory unit carries out one speculative 
execution. If sufficient number of MUS is not available to carry 
out speculative executions, the transaction is put to wait.  It can be 
observed that the performance of both ASLR (also SSLR) reaches 
the maximum value and saturates at MUS values equal to 
1.2*MPL. Note that the performance of SL does not reach the 
performance  of ASLR even after doubling the MUS values equal 
to 2*MPL.  Also, note that the performance of 2PL is immune to 
the additional resources.       
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Overall, the simulation experiments show that the performance of 
ASLR is better than 2PL, FCWR, SL and SSLR protocols. ASLR 
requires a fraction of additional resources equal to 0.2*MPL to 
achieve high performance. 

Table 2 shows the comparison of SSLR, ASLR with SL, 2PL and 
FCWR protocols on several aspects. Overall the proposed 



protocols are better over 2PL in case of performance, over SL 
protocol regarding consumption of extra processing resources,  
and over SI-based protocols regarding correctness and data 
currency, 

Among SSLR and ASLR, comparison shows that ASLR is better 
in terms of resource utilization and performance. However, we 
feel that in case of wide area network environments, the difference 
in performance improvement may not be the same. We investigate 
this, as a part of future work.      

           Table 2. Comparison of ASLR, SSLR, SL, 2PL and 
                                  FCWR    protocols

Parameter ASLR SSLR SL 2PL FCW
R

Throughput More 
than  
SSLR

High High Low Med-
ium

Device 
utilization

More 
than 
SSLR

High High Low High

Performance 
with extra 
resources

Increases 
Increases Slow 

incre-
ase  

No 
Cha-
nge

No 
Cha-
nge

Extra 
resources  
requirement

Manage-
able (0.2 
times)

Manage-
able (0.2 
times)

Very 
High

Not 
requi-
red

Not 
requi-
red

Data 
Currency

High High High High Low

Correctness 
of processing

Seriali-

zable

Serial-
izable

Sriali-
zable

Seria-
lizable

Not 
Seria-
lizab-
le

5. DIFFRENCES BETWEEN SL AND 
PROPOSED PROTOCOLS

In this section, we discuss the differences between the SL protocol 
and the SSLR and ASLR approaches.

(i) Aim:  The SL protocol is proposed to improve the performance 
of UTs in distributed database systems. The SSLR and ASLR 
protocols are developed to improve the performance of ROTs by 
identifying the specific characteristics of ROT processing 
environments. 

(ii) Basic Strategy: In SL, all transactions are allowed to 
speculate. In the proposed protocols, only ROTs are allowed to 
carry out speculative executions and UTs follow 2PL. 

(iii) Number of versions of data object:  In SL, whenever a UT 
accesses a data object, it adds after-images to the data object tree, 
allows other waiting transactions to access the same data object 
tree. So the number of versions in the data object tree explodes. 

However, in the proposed protocols, no two UTs can access a 
particular data object simultaneously, as UTs follow 2PL. So, at a 
particular instant of time, for a data object, the available versions 
never exceed two. 

(iv) Speculative executions: In SL, whenever a transaction 
accesses a data object, each execution of that transaction starts 

new speculative executions equal to the number of versions in the 
data object tree. As number of versions explodes, the number of 
speculative executions of a transaction also explodes. 

In the proposed protocols, the number of versions for a data 
object never exceeds two, as per our earlier discussion. So, in the 
proposed SSLR and ASLR protocols, less number of speculative 
executions is carried out by ROTs. 

(v) Commitment of transactions:  In SL, a transaction can 
commit only after the termination of preceding transactions with 
which it has formed commit dependencies. 

However, both SSLR and ASLR protocols allow an ROT to 
complete its execution, without waiting for the termination of 
preceding transactions with which it has formed commit 
dependencies. As a result the performance improves.  

(vi) Type of speculation: In SL, it was proposed that speculative 
executions of a transaction are carried out in a synchronous 
manner. 

We have developed SSLR by considering synchronous method of
speculative executions as in SL. In addition, we have also 
proposed ASLR protocol by considering asynchronous method of 
carrying out speculative executions. 

(vii) Extra resources requirement: The SL requires more extra
processing resources.

The proposed protocols require less number of extra processing 
resources due to the optimizations proposed. 

(viii) Lock requirement:   Three types of locks used in SL: R-
lock, EW-lock and SPW-lock. 
          

In the proposed protocols four types of locks are used: RR-lock, 
RU-lock, EW-lock and SPW-lock. An ROT requests RR-lock to 
read a data object, whereas a UT requests RU-lock to read. These 
two read-locks (RU-lock and RR-lock) are necessary to 
distinguish between read operations of ROTs from read 
operations of UTs. Note that, only read operations of ROTs are 
processed with speculation and the read operations of UTs are 
executed without speculation.

6. DISCUSSION 
In this section, we discuss the implementation issues regarding 
processing of ROTs in SSLR and ASLR. However, the detailed 
investigation on these issues will be carried out as a part of future
work.

(i) Pre-compilation. In this paper, we assume that a UT releases 
the lock whenever it produces the after-image. We assume that it 
is possible to put markers for each data object to indicate when 
the transaction finishes work on that object. Since the transactions 
are stored procedures, we believe that it is possible to put the lock 
conversion markers by analyzing the stored procedures.      

 (ii) Speculative executions. We have assumed that speculative 
executions of transaction are carried out in parallel by considering 
multi-processor environment. It can be noted that additional 
memory can be added to the system at lesser cost. Since CPU 
speed is high in the orders of magnitude than the disk I/O, even in 
a single processor environment, the CPU time can be used 
productively to improve the performance of ROTs.     



(iii) Scan and index.  We have to investigate the handling of 
indexes and scans when modifications are performed to the 
database under SSLR and ASLR protocols. 

(iv) Performance of SSLR and ASLR protocols in wide area 
network environments.  We conducted the experiments for the 
performance evaluation of SSLR and ASLR protocols by 
considering centralized environment. However, the effectiveness 
of SSLR and ASLR protocols in distributed environment has to 
be investigated.

7. SUMMARY AND CONCLUSIONS
The development of high performance protocol to process ROTs 
without any correctness and data currency issues is a open 
research problem. As a part of the Ph.D. thesis work, we have 
investigated high performance synchronization protocols for
ROT intensive environments. The proposed protocols have been 
developed using speculation and they do not suffer from any 
correctness and data currency issues. We have developed two 
speculation-based approaches. One is synchronous speculative 
locking protocol for ROTs and the other is asynchronous
speculative locking protocol for ROTs. Through simulation 
results, it has been shown that the proposed protocols improve the 
performance significantly over 2PL and SI-based protocols with a 
fraction (0.2 times) of additional resources. 

As a part of future work,  in addition to the issues listed in section 
6, we are also planning to investigate the performance of the 
proposed protocols through benchmarks after implementing the 
protocols in  a prototype DBMS. We are also planning to develop 
protocols based on speculation, to improve the performance of 
real-time read-only transactions.  

Improving the performance of ROTs without correctness and data 
currency issues is a crucial factor in several e-commerce 
environments like stock marketing, airline operating systems and 
other web services. Also, currently multi-core CPUs are available 
with high processing power. Main memory cost is also coming 
down. The proposed protocols provide the scope for improving 
the performance of ROTs in such environments by trading extra 
processing resources.
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