
Extending Speculation for Improving the
Performance of Read-only Transactions**

T. Ragunathan
Center for Data Engineering

International Institute of Information
Technology, Hyderabad, India

+91-40-23002314

ragunathan@students.iiit.ac.in

ABSTRACT
This paper presents an ongoing Ph.D. thesis work which aims at
improving the performance of read-only transactions (ROTs) in
database systems using the notion of speculation. In the literature,
speculative locking approach has been proposed to improve the
transaction processing performance in online transaction
processing environments. In this thesis, we have proposed two
protocols to improve the performance of ROTs, by making
appropriate modifications to the existing speculative locking
protocol. The proposed protocols process ROTs without any data
currency and correctness issues. The simulation results show that
the proposed protocols improve the throughput performance
significantly over two-phase locking (2PL) and snapshot isolation
(SI)-based approaches with manageable extra processing
resources.

Advisor: P. Krishna Reddy

1. INTRODUCTION
In the emerging web databases and e-commerce scenario,
information systems should meet intensive information
requirements from a large number of users. The information
systems frequently process read-only transactions (ROTs) or
queries. In such systems, the ROTs should be processed with
acceptable response time without any correctness and data
currency issues. Research efforts are being made in the literature
to investigate the approaches to improve the performance of
ROTs. As a part of Ph.D. thesis work, we are addressing this
problem and proposing speculation-based protocols to improve
the performance of ROTs.

A read-only transaction (ROT) does not modify any data. The
main issues in processing ROTs are correctness (serializability),
data currency and performance. The widely used two-phase
locking (2PL) protocol [1][2] processes ROTs with serializability
as correctness criteria. However, it performs poorly as data
contention increases due to increased waiting. In the literature,
there are efforts to improve the performance by processing ROTs
with a multi-version based approach [11], at lower isolation
levels [3] and by proposing separate protocols for ROTs and
update transactions [10][11]. Snapshot Isolation (SI)–based
methods [3] are widely used to process ROTs. Even though, SI-
based approaches improve performance, they compromise on the
aspects of both data currency and correctness (serializability).

**

We briefly explain about data currency. The aspect of data
currency is discussed for a data warehousing environment in [6]
and for a replicated environment in [19]. The term “data
currency” refers to how current or up-to-date system can
guarantee a data object to be, for a transaction. Based on this, we
define data currency for DBMS environment as follows. Let Ti

and “t” denote a transaction and time duration, respectively. The
data currency of the data object provided to Ti is the value of “t”
which is the time difference between the commit time of the
transaction which created the latest version of the data object and
the commit time of the transaction which created the version of
that data object that was read by Ti. If “t” is less/more, it means
that transactions are provided with high/low data currency.

In the literature, a speculative locking [SL] protocol [7] is
proposed to improve the transaction processing performance in
distributed database systems. In SL, a transaction carries out
multiple executions by accessing the uncommitted values
produced by the preceding transactions. The SL protocol is
proposed to improve the transaction processing performance of
OLTP environment by considering transactions which contain
both the read and write operations. Through SL, the performance
can be improved by trading extra processing resources without
violating serializability criteria.

As a part of Ph.D. thesis, we are making efforts to develop
speculation-based protocols to improve the performance of ROTs
in database environment which processes both the ROTs and
update transactions (UTs). We have proposed speculative
protocols to improve the performance of ROTs by making
appropriate modifications and extensions to SL through
identifying features specific to ROT processing environments. As
a result, there is an opportunity to improve the performance by
processing ROTs with few speculative executions as compared to
SL [7]. The proposed modifications result in two protocols for
ROTs. One is synchronous speculative locking protocol [8] and
another is asynchronous speculative locking protocol [20].

Using the proposed protocols, ROTs can be processed with high
performance and without any data currency and correctness
issues. The simulation results under limited resource
environments show that these protocols improve the performance
significantly over the other approaches including 2PL and SI-
based approaches by adding a fraction (0.2 times) of additional
resources.

Selected for EDBT Ph.D. Workshop 2008, March 25,
Nantes, France

1.1 System Model
A Transaction is a particular execution of program that
manipulates the database by means of read and writes operations
[17]. A transaction can read a set of data objects from the database
which forms the read-set (RS) of the transaction and modify the
values of another set of data objects which forms the write-set
(WS) of the transaction. The transactions Ti and Tj are said to
have a conflict, if RS(Ti) ∩ WS(Tj) ≠ Ø, or WS(Ti) ∩ RS(Tj) ≠ Ø
or WS(Ti) ∩ WS(Tj) ≠ Ø. An ROT does not contain write
operations and a UT includes both read and writes operations. The
database management systems support components like
transaction manager and data manager [17]. The transaction
manager supervises the processing of transactions, while the data
manager manages the individual databases.

We explain here some notations. Data objects are denoted with
‘x’,’y’, … Transactions are represented with Ti, Tj,… . For the
data object ‘x’, ‘xi’ (i = 0 to n) represents ith version of ‘x’. The
notation ri[xj] indicates that read operation is executed on ‘xj’ and
wi[xj] denotes that write operation is executed on a particular
version of ‘x’ and as a result ‘xj’ is produced. The notations, ‘s’,
‘c’ and ‘a’ depict the start, commit and abort of transactions. Tij

indicates jth speculative execution of Ti.

1.2 Paper Organization
The rest of the paper is organized as follows. In the next section,
we discuss the state of the art and open problems in processing
ROTs. In section 3, we explain the speculative locking protocol.
In section 4, we explain the basic idea of SSLR and ASLR
protocols, the proof of correctness and the performance evaluation
results. In section 5, we discuss how the proposed protocols differ
with the SL approach proposed in [7]. In section 6, we discuss
about the implementation issues. The last section contains a
summary and conclusions.

2. PROCESSING OF ROTS: STATE OF
ART AND OPEN PROBLEMS

As a part of state of art, we first present the related work. Next we
discuss the two main protocols, 2PL and SI-based approaches
related to processing of ROTs. Subsequently, we discuss the open
research problems.

2.1 Related Work
In this section, we review the approaches proposed in the
literature for improving the performance of ROTs. We also
discuss the approaches based on speculation.

Four isolation levels are specified in ANSI/ISO SQL-92 standard
[9] for processing transactions. These isolation levels are read
uncommitted, read committed, repeatable read, and serializable.
The processing of transactions is considered as correct if they are
processed at serializable isolation level. The popular 2PL protocol
[1][2] processes ROTs at serilaizability isolation level. Even
though 2PL processes ROTs correctly with no data currency
related issues, the performance deteriorates as data contention
increases. We consider strict 2PL [17] for discussion and
comparison.

To improve performance of ROTs, a new isolation level called
“Snapshot Isolation (SI)” was proposed in [3]. (Pease refer to
section 2.2 for details). Note that ROTs processed at SI violate the
serializability criteria and receives low data currency.

In [4], a theory is discussed to convert non serializable executions
under SI into serializable executions by modifying the program
logic of the applications. However, this approach requires
programmers to detect the static dependencies between the
application programs and to modify the program which will lead
to a semantically equivalent application program that can be
executed correctly without violating serializability criteria. In [5],
automating the task of modifying the program logic to satisfy the
serializability criteria is discussed.

An approach has been proposed in [10] for distributed
environment, in which ROTs are processed with a special
algorithm that is different from the one used for UTs. A protocol
is proposed in [11] for managing data in a replicated multi-
version environment. In this protocol, the execution of ROTs is
completely independent of the underlying concurrency control
and replica control mechanisms. In [12], an approach has been
discussed by maintaining multiple versions of data objects. In the
dual copy method proposed in [13], ROTs are separated from
UTs.

Speculation has been extended in [14] to optimistic protocol for
improving the deadline performance in centralized real-time
environments. In [7], speculation has been extended to improve
the performance of distributed database systems (please refer to
section 3 for details) by considering transactions which contain
both the read and writes operations.

The approaches proposed so far (other than speculation
approaches), improve the performance of ROTs by compromising
data currency. We have proposed approaches to improve both the
performance and data currency of ROTs by extending the notion
of speculation.

2.2 2PL and SI-based protocols
The 2PL protocol is widely deployed in DBMS for transaction
management and SI-based protocols are widely deployed to
process ROTs. In this section, we explain how these protocols
process ROTs.

2.2.1 Processing of ROTs in 2PL
Under 2PL [17], a transaction obtains “read (R) lock” to read an
object and a “write (W) lock” to write/update the data object. In
2PL, a transaction should obtain all the required locks before
performing any unlock operation. We have considered a variation
of 2PL called “strict two-phase locking protocol” [17]. The strict
2PL scheduler releases all of a transaction’s locks together, when
the transaction terminates.

The lock compatibility matrix for 2PL [17] is shown in Figure 1.
A transaction can request for Read (R)-locks or Write (W)-locks.
Once a transaction releases locks, it cannot request for any more
locks. The entry “yes” indicates that corresponding locks are
compatible. The entry “no” indicates that the corresponding locks
are incompatible. The processing of ROTs under 2PL is depicted
in Figure 2. T2, which is an ROT, has to wait for lock on the data
object ‘x’ until T1 commits due to read-write conflict. Similarly,
T3 which is a UT has to wait for lock on ‘y’ till T1 commits due to
write-write conflict.

 Figure 1. Lock Comaptibility Matrix for 2PL

r1[x0] w1[x1] r1[y0] w1[y1]

r2[x1] r2[z0]

r3[y1] w3[y2]

T1:

T2:

T3:

s1 c1

s2 c2

s3 c3

r1[x0] w1[x1] r1[y0] w1[y1]

r2[x1] r2[z0]

r3[y1] w3[y2]

T1:

T2:

T3:

s1 c1

s2 c2

s3 c3

 Figure 2. Depiction of Transaction Processing with 2PL

2.2.2 Processing of ROTs with SI-based protocols
The performance of ROTs can be improved by processing them at
lower isolation levels by compromising both the correctness and
data currency [3]. To improve the performance of ROTs, a new
isolation level called “Snapshot Isolation (SI)” was proposed in
[3]. In SI-based techniques, an ROT reads data from the snapshot
of the (committed) data available when the transaction started or
generated the first read operation. The modifications performed by
other concurrent UTs which have started their execution after the
ROT (Ti), are unavailable to Ti.

A variation of SI-based protocol called “First Committer Wins
Rule (FCWR)” works as follows. Let Ti and Tj be UTs. Ti can
successfully commit if and only if no concurrent Tj has committed
writes of data objects that Ti intends to write. The processing of
ROTs using FCWR is depicted in Figure 3. Both T1 and T3 are
UTs, and T2 is an ROT. It can be observed that T2 reads the
currently available values ’y0’ and ’z0’ and proceeds with the
execution. As T1 commits, T3 has to be aborted as per the FCWR.
It can be noted that T2 commits with the old values and it has not
accessed the updates produced by T1 even though T1 commits
before its completion. It can be observed that T2 has missed the
updates produced by T1 and thus violates the serializability
criteria.

Note that ROTs processed at SI violate serializability criteria and
receive low data currency [4]. A theory is discussed in [4], which
characterizes when non-serializable executions of applications can
occur under SI. It is shown in [4] that by modifying the logic of
the application program, it is possible to make SI serializable. In
[5], automating the task of modifying the program logic to satisfy
the serializability criteria is discussed.

2.3 Open Problems
The main issues regarding processing of ROTs are correctness,
data currency and performance. Even though 2PL processes ROTs
correctly with no data currency related issues, the performance
deteriorates as data contention increases. On the other hand, SI-
based techniques improve the performance by compromising both
correctness and data currency. So, the development of high

performance protocol to process ROTs without any correctness
and data currency issues is a open research problem.

In this thesis work, we have made an effort to develop high
performance protocols without any correctness and data currency
issues.

r1[x0] w1[x1] r1[y0] w1[y1]T1:

T2:

T3:

s1 c1

r2[y0] r2[z0]

s2 c2

r3[x0] w3[x2]

s3
a3

r1[x0] w1[x1] r1[y0] w1[y1]T1:

T2:

T3:

s1 c1

r2[y0] r2[z0]

s2 c2

r3[x0] w3[x2]

s3
a3

Figure 3. Depiction of Transaction Processing FCWR

3. SPECULATIVE LOCKING PROTOCOL
In [7], speculation has been extended to 2PL for improving the
transaction processing performance. In a database system,
whenever a transaction Ti reads data objects, these objects are
copied into the private working space of that transaction. It was
assumed that Ti issues wi[x] (write request on the data object ‘x’)
after completing all its work on data object ‘x’. This assumption is
also adopted in [15] [16].

In the speculative locking (SL) protocol [7], a transaction
produces after-images whenever it completes the work with that
object. A waiting transaction is allowed to access the after-images
produced by the conflicting active transactions. By accessing
both before- and after-images of conflicting active transactions,
the waiting transaction carries out multiple speculative executions
and retains one of the executions based on the termination status
of preceding transactions. The requesting transaction forms
commit dependencies with the preceding transactions; it commits
only after the termination of preceding transactions with which it
has formed commit dependencies.

Figure 5 depicts the processing of transactions with SL. Tij

indicates jth (j > 0) speculative execution of Ti. It can be observed
that T2 starts speculative executions T21 and T22, once T1 produces
the after-image ‘x1’. T21 is carried out by reading ‘x0’ and T22 is
carried out by reading ‘x1’. Here, T2 forms commit dependency
with T1; It means T2 can only commit after T1’s termination. If T1

commits, T2 also commits by retaining the execution T22.
Otherwise, if T1 aborts, T21 is retained. Note that speculation
improves parallelism among T1 and T2. We can observe that the
speculative executions of T2 are started in a synchronous manner.

Lock compatibility matrix of SL is shown in Figure 4. Here the
W-lock is partitioned into two locks: exclusive write (EW)-lock
and speculative write (SPW)-lock. Transactions request R-lock for
read and EW-lock for write. When a transaction produces after-
image for a data object, the EW-lock is converted into SPW-lock.
Under SL, only one transaction holds an EW-lock on a data object
at any time. However, note that, multiple transactions can hold
the R and SPW-locks on a data object at the same time. The entry
“sp_yes” indicates that the requesting transaction carries out
speculative executions and forms commit dependencies with the
preceding transactions that hold SPW-locks. SL ensures

 Lock Held by TjLock Request
by Ti R W

R yes No

W no No

serializability by making transactions to wait by forming a commit
dependency.

 Figure 4. Lock Comaptibility Matrix for SL

c2

T2:

r1[x0] w1[x1] r1[y0] w1[y1]

r2[x0] w2[x2] r2[z0] w2[z1]

r2[x1] w2[x3] r2[z0] w2[z1]

T1:

T21

T22

s1

s2

c1

c2

T2:

r1[x0] w1[x1] r1[y0] w1[y1]

r2[x0] w2[x2] r2[z0] w2[z1]

r2[x1] w2[x3] r2[z0] w2[z1]

T1:

T21

T22

s1

s2

c1

Figure 5. Depiction of Speculative Transaction Processing

In SL, at a time, a data object may have multiple versions which
are organized using tree data structure with one committed value
(at the root) and uncommitted values at other nodes. Whenever a
transaction executes a write operation by reading a particular
version (‘xi’), new object versions are created and are added as
children to the corresponding node (‘xi’).

A family of SL protocols, SL(n), SL(1) and SL(2) are proposed
in [7]. Through simulation experiments, it has been shown that SL
improves the performance significantly over 2PL by trading extra
resources. Also, SL protocol produces serializable executions.

4. CONTRIBUTION OF THE THESIS
The contribution of this Ph.D. thesis is the development of two
speculation-based protocols. One is synchronous speculative
locking protocol for ROTs (SSLR) and the other is asynchronous
speculative locking protocol for ROTs (ASLR). In this section, we
first present the basic idea of both protocols. Next, the proof of
correctness is discussed. Subsequently, we present the
performance evaluation results.

4.1 Synchronous Speculative Locking
Protocol

The SL protocol [7] was proposed to process UTs; i.e., the
transactions that contain both read and write operations. In that
protocol, at a time, a data object may have multiple versions
which are organized using a tree data structure. Whenever a
transaction executes a write operation, new uncommitted object
versions are created and added to the corresponding object trees.
It can be observed that write operations result in the generation of
new uncommitted versions. Also, SL allows several UTs to have a
SPW-lock. As a result, the number of versions for contentious
data objects, and the number of speculative executions of the
transactions explode with the increase in data contention. It can be
noted that more extra processing power is required to support the
increased number of speculative executions and data object
versions.

However, regarding processing of ROTs, it can be observed that
an ROT only reads the existing data and does not generate any
new versions. So, if we process only ROTs through speculation, it
is possible to improve the performance with less extra processing
resources as compared to the resources used for processing UTs
and ROTs with speculation. The explanation is as follows.

Suppose we apply SL to ROT environments which contains both
ROTs and UTs. Each UT obtains EW-lock and reads the after-
images produced by preceding transactions and produces new
uncommitted images and converts EW-lock into SPW-lock. This
allows other waiting transactions to get EW-locks. So under SL,
several UTs can have SPW-lock on the same data object which
causes the explosion of data object versions. As a result, the
waiting transactions including ROTs have to carry out increased
number of speculative executions as they conflict with all the
transactions which have obtained SPW-locks on the common
conflicting data objects.

It can be noted that a UT reads before-images and produces after-
images and an ROT only reads before-images and does not
produce any after-images. If we process only ROTs with
speculation and UTs with 2PL, the number of speculative
executions can be reduced due to the following reasons. When we
process UTs with 2PL, only one transaction holds EW-lock at any
time. If one UT is accessing a data object, other UTs have to wait.
As a result, the number of versions for any data object never
exceeds two. So an ROT can have conflict with only UTs which
have accessed the common data objects. As a result, it is possible
to reduce the number of speculative executions if we process only
ROTs with speculation and UTs with 2PL.

The synchronous speculative locking for ROTs (SSLR) is
proposed by adding two aspects to the basic SL protocol.

a) In SSLR only ROTs are processed with speculation.
The UTs are processed with 2PL. We assume that a UT
releases the locks (converts EW-lock into SPW-lock)
whenever it produces after-images. Whenever an ROT
conflicts with a UT, it carries out speculative executions
by accessing both before- and after-images of the
preceding UTs.

b) The other aspect is regarding the commitment of ROTs.
In the SL [7], a waiting transaction carries out
speculative executions and waits for the commitment of
preceding transactions. Whereas, in SSLR whenever
ROT completes execution, it commits by retaining
appropriate execution. In SSLR an ROT does not wait
for the termination of conflicting active transactions.
However, it can be noted that, a UT waits for the
termination of preceding UTs and ROTs.

The lock compatibility matrix of SSLR is shown in Figure 6.
Similar to the case of speculative locking, W-lock is divided into
EW-lock and SPW-lock. UTs request EW-lock for writing the
data object. The EW-lock is converted into SPW-lock after the
work on the data object is completed. Separate read-locks are
employed for UTs and ROTs. A UT requests for RU-lock (read
lock for UT) to read a data object and an ROT requests for RR-
lock (read lock for ROT) to read a data object. The entry “sp_yes”

 Lock Held by TjLock Request
by Ti R EW SPW

R yes No sp_yes

EW sp_yes No sp_yes

indicates that the requesting transaction carries out speculative
executions and forms commit dependency with the lock holding
transaction. In [8], SSLR is discussed in detail.

 Lock Held by TjLock Request
by Ti RR RU EW SPW

RR yes yes no sp_yes

RU yes yes no no

EW no no no no

 Figure 6. Lock Comaptibility Matrix for SSLR

It can be noted that the formation of commit dependency among
transactions in SSLR is different from that of SL. Let Ti be an
ROT and Tj be a UT. Suppose Ti forms a commit dependency
with Tj. In SL, Ti commits only after the termination of Tj.
Whereas in SSLR, whenever Ti completes, it can commit by
retaining one of the speculative executions without waiting for Tj

to terminate.

Figure 7 depicts the processing under SSLR. Here, T2 is an ROT
and T1 and T3 are UTs. Whenever T1 produces after-image ‘x1’, T2

accesses both ‘x0’ and ‘x1’ and carries out two executions T21 and
T22, respectively. After T2’s completion, T21 is retained even
though T1 is not yet committed. Note that, being a UT, T3 waits
for T1 for the release of the lock on ‘x’ as per 2PL rule.

c3

r1[x0] w1[x1] r1[y0] w1[y1] r1[p0] w1[p1]T1:

s1 c1

r2[x0] r2[z0]

r2[x1] r2[z0]

T2:

s2 c2

T3

s3

r3[x1] w3[x2]

T22

T21

c3

r1[x0] w1[x1] r1[y0] w1[y1] r1[p0] w1[p1]T1:

s1 c1

r2[x0] r2[z0]

r2[x1] r2[z0]

T2:

s2 c2

T3

s3

r3[x1] w3[x2]

T22

T21

 Figure 7. Depiction of Transaction Processing with SSLR

4.2 Asynchronous Speculative Locking
Protocol

Note that we can process ROTs in two ways by employing
speculation. One is synchronous speculation in which an ROT
waits till the preceding transaction produces after-image. It means
that all the speculative executions of an ROT progress at the same
pace and complete at the same time. For example, in Figure 5, T2

starts speculative executions when T1 produces x1. With this
option, the SSLR protocol is proposed.

Alternatively, the speculative executions of ROTs can be
processed in an asynchronous fashion. The basic idea is as
follows. The speculative executions of an ROT can be carried out
in an independent manner. The ROT is allowed to access the
available data object versions and carry out the speculative
executions. Whenever preceding transaction produces after-image,
further speculative executions can be started in a dynamic manner.
The asynchronous method of processing ROTs reduces waiting
and improves the performance. We call the proposed protocol as
asynchronous speculative locking protocol for ROTs (ASLR). In
[20], ASLR is discussed in detail.

Figure 8 depicts the processing under ASLR. Here T2 accesses the
before-image ‘x0’ and other available values of data objects ‘y0’
and ‘z0’ and starts speculative execution T21. Once the after-image
‘x1’ becomes available, another speculative execution T22 is
started. Note that T21 and T22 are executed in a parallel manner.
Whenever the processing is completed for any one of the
speculative execution the ROT can be committed, provided it
contains the effect of committed transactions at that instant. Note
that being UT, T3 waits for T1 for the release of the lock on ‘x’ as
per 2PL rule.

The lock compatibility matrix of ASLR is shown in Figure 9.
Similar to the case of speculative locking, W-lock is divided into
EW-lock and SPW-lock. The UTs request EW-lock for writing
the data object. The EW-lock is converted into the SPW-lock after
the work on the data object is completed. We propose separate
read-locks for UTs and ROTs. A UT requests RU-lock (read lock
for UT) for reading a data object and an ROT requests RR-lock
(read lock for ROT) for reading a data object.

c2s2

s3 c3

c1s1

r1[x0] w1[x1] r1[p0] w1[p1] r1[q0] w1[q1]T1:

T3:

T2:
r2[x0]r2[y0]r2[z0]

r2[x1]

T21

T22

r3[x1] w3[x2]

c2s2

s3 c3

c1s1

r1[x0] w1[x1] r1[p0] w1[p1] r1[q0] w1[q1]T1:

T3:

T2:
r2[x0]r2[y0]r2[z0]

r2[x1]

T21

T22

r3[x1] w3[x2]

Figure 8. Depiction of Transaction Processing with ASLR

Lock Held by Tj Lock
Request by

Ti
RR RU EW SPW

RR yes yes sp_yes sp_yes

RU yes yes no no

EW no no no no

 Figure 9. Lock Compatibility Matrix for ASLR.

4.3 Correctness
We briefly argue that the schedules produced by ASLR are
serializable [17]. Under SSLR and ASLR, the UTs are handled
using 2PL rules which capture all Read-Write and Write-Write
conflicts. The SSLR and ASLR rules capture all the Write-Read
conflicts. For each Write-Read conflict, SSLR and ASLR rules
ensure that Read operation reads from the preceding Write
operation. Suppose, let Ti be an ROT and conflicts with “n”
transactions and commits at time “t”. We can divide “n”
transactions into two sets. One set is “committed set (CS)” which
includes the transactions which have committed before “t” and
another set is “uncommitted set (US)” which includes the
transactions which are not committed at time “t”. As per SSLR
and ASLR rules, Ti is committed by including the effects of all the
transactions in CS. So, Ti’s execution is equivalent to the serial
execution produced after CS. The execution of each transaction
in US is equivalent to the serial execution after Ti. It means that

the execution is equivalent to the serial order CS << Ti << US
(“<<” denotes the partial order). So, it can be easily proved that
SSLR and ASLR produce serializable schedules.

4.4 Performance Evaluation
In this section, first we discuss the simulation model and
protocols considered for comparison briefly. Next we present the
evaluation results by considering both unlimited and limited
resource environments.

 Table 1. Simulation Parameters, Meaning and Values

Parameter Meaning Values

dbSize Number of objects in
the database

1000

cpuTime Time to carry out CPU
request

5ms

ioTime Time to carry out I/O
request

10ms

rotMaxTranSize Size of largest ROT
transaction

20 objects

rotMinTranSize Size of smallest ROT
transaction

15 objects

utMaxTranSize Size of largest UT
transaction

15 objects

utMinTranSize Size of smallest UT
transaction

5 objects

noResUnits Number of RUs(1
CPU, 2 I/O)

8

mpl Multiprogramming
Level (10 – 100)

Simulation
Variable

A discrete event simulator based on a closed-queuing model has
been developed based on [18]. The description of parameters
used in the simulation with values is shown in Table 1. We have
employed throughput as the performance metric which can be
defined as the number of transactions completed per second.

Protocols: We have compared SSLR and ASLR with 2PL,
FCWR, SI-2PL, and SL. In 2PL, SL, SSLR and ASLR
transactions request for locks in a dynamic manner, one by one.
For SL, SSLR and ASLR, we have assumed that all the
speculative executions of a transaction are carried out in parallel.
In FCWR, the conflicts between UTs are managed by aborting the
transactions. Aborted transactions are resubmitted after the time
duration which equals to the average response time. We also
consider SI-2PL approach. SI-2PL is a variation to the approach
proposed in [11][12]. In SI-2PL, ROTs are processed with
snapshot isolation and UTs are processed with 2PL.

(i) Results under unlimited resources
Figure 10 shows how throughput performance for 2PL, FCWR,
SL, SSLR, ALSR and SI-2PL vary with MPL. It can be noted that
the performance of ASLR is significantly higher than that of 2PL
and FCWR. 2PL performs poorly as the waiting time of the
transactions is more. In FCWR, the performance deteriorates due
to its “first committer wins rule” as more number of UTs gets
aborted as data contention increases. Note that ASLR’s
performance is better than both SL and ASLR due to the reduced

waiting as a result of asynchronous speculation. Note that in both
SL and SSLR, ROTs wait for the lock conversion from EW-lock
to SPW-lock. We observe that the performance of SL and SSLR
is close. Also, it can be observed that the performance of ASLR
is more than that of SI-2PL when contention increases. (Note that
both SI-2PL and FCWR suffer from correctness and data currency
problems.)

0

20

40

60

80

0 20 40 60 80 100

MPL

T
h

ro
u

g
h

p
u

t

2PL
SSLR
FCWR
ASLR
SI-2PL
SL

UTs = 30%, # RUs = 8

 Figure 10. MPL versus Throughput

(ii) Results under limited resources
Figure 11 shows the performance of 2PL, SL, SSLR and ASLR
protocols by simulating limited resources environments. The
resources are allocated in terms of memory units (MUS). We
assumed that each memory unit carries out one speculative
execution. If sufficient number of MUS is not available to carry
out speculative executions, the transaction is put to wait. It can be
observed that the performance of both ASLR (also SSLR) reaches
the maximum value and saturates at MUS values equal to
1.2*MPL. Note that the performance of SL does not reach the
performance of ASLR even after doubling the MUS values equal
to 2*MPL. Also, note that the performance of 2PL is immune to
the additional resources.

UTs = 30%, # RUs = 8, MPL = 20

0

10

20

30

40

50

1 1.2 1.4 1.6 1.8 2
Total Memory Units (in multiples of

MPL)

T
h

ro
u

g
h

p
u

t

2PL
SSLR
SL
ASLR

Figure 11. Throughput Performance with
limited resources

Overall, the simulation experiments show that the performance of
ASLR is better than 2PL, FCWR, SL and SSLR protocols. ASLR
requires a fraction of additional resources equal to 0.2*MPL to
achieve high performance.

Table 2 shows the comparison of SSLR, ASLR with SL, 2PL and
FCWR protocols on several aspects. Overall the proposed

protocols are better over 2PL in case of performance, over SL
protocol regarding consumption of extra processing resources,
and over SI-based protocols regarding correctness and data
currency,

Among SSLR and ASLR, comparison shows that ASLR is better
in terms of resource utilization and performance. However, we
feel that in case of wide area network environments, the difference
in performance improvement may not be the same. We investigate
this, as a part of future work.

 Table 2. Comparison of ASLR, SSLR, SL, 2PL and
 FCWR protocols

Parameter ASLR SSLR SL 2PL FCW
R

Throughput More
than
SSLR

High High Low Med-
ium

Device
utilization

More
than
SSLR

High High Low High

Performance
with extra
resources

Increases
Increases Slow

incre-
ase

No
Cha-
nge

No
Cha-
nge

Extra
resources
requirement

Manage-
able (0.2
times)

Manage-
able (0.2
times)

Very
High

Not
requi-
red

Not
requi-
red

Data
Currency

High High High High Low

Correctness
of processing

Seriali-

zable

Serial-
izable

Sriali-
zable

Seria-
lizable

Not
Seria-
lizab-
le

5. DIFFRENCES BETWEEN SL AND
PROPOSED PROTOCOLS

In this section, we discuss the differences between the SL protocol
and the SSLR and ASLR approaches.

(i) Aim: The SL protocol is proposed to improve the performance
of UTs in distributed database systems. The SSLR and ASLR
protocols are developed to improve the performance of ROTs by
identifying the specific characteristics of ROT processing
environments.

(ii) Basic Strategy: In SL, all transactions are allowed to
speculate. In the proposed protocols, only ROTs are allowed to
carry out speculative executions and UTs follow 2PL.

(iii) Number of versions of data object: In SL, whenever a UT
accesses a data object, it adds after-images to the data object tree,
allows other waiting transactions to access the same data object
tree. So the number of versions in the data object tree explodes.

However, in the proposed protocols, no two UTs can access a
particular data object simultaneously, as UTs follow 2PL. So, at a
particular instant of time, for a data object, the available versions
never exceed two.

(iv) Speculative executions: In SL, whenever a transaction
accesses a data object, each execution of that transaction starts

new speculative executions equal to the number of versions in the
data object tree. As number of versions explodes, the number of
speculative executions of a transaction also explodes.

In the proposed protocols, the number of versions for a data
object never exceeds two, as per our earlier discussion. So, in the
proposed SSLR and ASLR protocols, less number of speculative
executions is carried out by ROTs.

(v) Commitment of transactions: In SL, a transaction can
commit only after the termination of preceding transactions with
which it has formed commit dependencies.

However, both SSLR and ASLR protocols allow an ROT to
complete its execution, without waiting for the termination of
preceding transactions with which it has formed commit
dependencies. As a result the performance improves.

(vi) Type of speculation: In SL, it was proposed that speculative
executions of a transaction are carried out in a synchronous
manner.

We have developed SSLR by considering synchronous method of
speculative executions as in SL. In addition, we have also
proposed ASLR protocol by considering asynchronous method of
carrying out speculative executions.

(vii) Extra resources requirement: The SL requires more extra
processing resources.

The proposed protocols require less number of extra processing
resources due to the optimizations proposed.

(viii) Lock requirement: Three types of locks used in SL: R-
lock, EW-lock and SPW-lock.

In the proposed protocols four types of locks are used: RR-lock,
RU-lock, EW-lock and SPW-lock. An ROT requests RR-lock to
read a data object, whereas a UT requests RU-lock to read. These
two read-locks (RU-lock and RR-lock) are necessary to
distinguish between read operations of ROTs from read
operations of UTs. Note that, only read operations of ROTs are
processed with speculation and the read operations of UTs are
executed without speculation.

6. DISCUSSION
In this section, we discuss the implementation issues regarding
processing of ROTs in SSLR and ASLR. However, the detailed
investigation on these issues will be carried out as a part of future
work.

(i) Pre-compilation. In this paper, we assume that a UT releases
the lock whenever it produces the after-image. We assume that it
is possible to put markers for each data object to indicate when
the transaction finishes work on that object. Since the transactions
are stored procedures, we believe that it is possible to put the lock
conversion markers by analyzing the stored procedures.

 (ii) Speculative executions. We have assumed that speculative
executions of transaction are carried out in parallel by considering
multi-processor environment. It can be noted that additional
memory can be added to the system at lesser cost. Since CPU
speed is high in the orders of magnitude than the disk I/O, even in
a single processor environment, the CPU time can be used
productively to improve the performance of ROTs.

(iii) Scan and index. We have to investigate the handling of
indexes and scans when modifications are performed to the
database under SSLR and ASLR protocols.

(iv) Performance of SSLR and ASLR protocols in wide area
network environments. We conducted the experiments for the
performance evaluation of SSLR and ASLR protocols by
considering centralized environment. However, the effectiveness
of SSLR and ASLR protocols in distributed environment has to
be investigated.

7. SUMMARY AND CONCLUSIONS
The development of high performance protocol to process ROTs
without any correctness and data currency issues is a open
research problem. As a part of the Ph.D. thesis work, we have
investigated high performance synchronization protocols for
ROT intensive environments. The proposed protocols have been
developed using speculation and they do not suffer from any
correctness and data currency issues. We have developed two
speculation-based approaches. One is synchronous speculative
locking protocol for ROTs and the other is asynchronous
speculative locking protocol for ROTs. Through simulation
results, it has been shown that the proposed protocols improve the
performance significantly over 2PL and SI-based protocols with a
fraction (0.2 times) of additional resources.

As a part of future work, in addition to the issues listed in section
6, we are also planning to investigate the performance of the
proposed protocols through benchmarks after implementing the
protocols in a prototype DBMS. We are also planning to develop
protocols based on speculation, to improve the performance of
real-time read-only transactions.

Improving the performance of ROTs without correctness and data
currency issues is a crucial factor in several e-commerce
environments like stock marketing, airline operating systems and
other web services. Also, currently multi-core CPUs are available
with high processing power. Main memory cost is also coming
down. The proposed protocols provide the scope for improving
the performance of ROTs in such environments by trading extra
processing resources.

8. REFERENCES
[1] Eswaran, K., Gray, J., Lorie, R., Traiger, I. 1976. “The

notions of consistency and predicate locks in database
systems”. Communications of the ACM, 19, no.11: 624-633.

[2] Gray, J.; Reuter, A. 1993. Transaction Processing: Concepts
and techniques. Morgan Kaufmann.

[3] Hal Berenson, Phil Bernstein, Gray, J., Jim Melton,
Elizabeth O’Neil and Patrick O’Neil. 1995. “A Crtique of
ANSI SQL Isolation Levels.” In ACM SIGMOD.

[4] Fekete, A., Liarokapis, D., O’neil, E.,O’neil, P., Shasha,D.
2005.”Making Snapshot Isolation Serializable.”, ACM
Transactions on Database Systems,30, no.2, (June): 492-528.

[5] Sudhir Jorwekar, Alan Fekete, Krithi Ramamritham, and S.
Sudarshan. 2007. “Automating the Detection of Snapshot
Isolation Anomalies.” In VLDB ’07, Austria, (September).

[6] Dimitri Theodoratos, Mokrane Bouzeghoub. 1999. “Data
Currency Quality Factors in Data Warehouse Design.” In

Proceedings of the International Workshop on Design and
Management of Data Warehouses, Germany, (June). 15-1 –
15-15.

[7] Krishna Reddy, P., Masaru Kitusuregawa. 2004.
“Speculative Locking Protocols to Improve Performance for
Distributed Database Systems”,IEEE Transactions on
Knowledge and Data Engineering, 16 , no.2, (February):
154-169.

[8] Ragunathan, T., Krishna Reddy, P. 2007. “Improving the
performance of Read-only Transactions through
Speculation.” In 5th International Workshop on Databases in
Networked Information Systems, DNIS 2007, (October).
LNCS, vol. 4777, 203-221.

[9] ANSI X3.135-1992, 1992. American National Standard for
Information Systems- Database Language-SQL, November.

[10] Hector Garcia-Molina, Gio Wiederhold. 1982.”Read-Only
Transactions in a Distributed Database”, ACM Transactions
on Database Systems, (June):209-234.

[11] Satyanarayanan, O. T., Agrawal, D. 1993. “Efficient
Execution of Read-only Transactions in Replicated
Multiversion Databases”, IEEE transactions on Knowledge
and Data Engineering, 5, no.5, (October): 859-871.

[12] C. Mohan, Hamid Pirahesh, and Raymond Lorie. 1992.
“Efficient and Flexible Methods for Transient Versioning of
Records to Avoid Locking by Read-Only Transactions.” In
ACM SIGMOD.

[13] Bajojing Lu, Qinghua Zou and William Perrizo. 2001. A
“Dual Copy method for Transaction Separation with
Multiversion Control for Read-only Transactions.” In
Proceedings of the ACM Symposium on Applied
Computing. 290-294.

[14] Bestavros, A., Braoudakis, S. 1995. “Value-Cognizant
Speculative Concurrency Control Protocol.” In Proceedings
of 21st Very Large Databases Conference. 122-133.

[15] Agrawal, D., El Abbadi, A., Lang, A. E. 1994. “The
Performance of Protocols Based on Locks with Ordered
Sharing”. IEEE Transactions on Knowledge and Data
Engineering, 6. no.5, (October):805-818.

[16] Salem, K., Garcimolina, H., Shands, J. 1994. “Altruist
Locking”. ACM Transactions Data base Systems, 19. no.1,
(March):117-165.

[17] Bernstein, P. A., Hadzilacos, V., Goodman, N. 1987.
Concurrency Control and Recovery in Database Systems.
Addison-Wesley.

[18]. Rakesh Agrawal, Michael J. Carey, Miron Livny. 1987.
“Concurrency Control Performance Modeling: Alternatives
and Implications”. ACM Transactions on Database Systems,
12, no. 4, (December): 609-654.

[19] Hongfei Guo, Per-Ake Larson, Raghu Ramakrishnan,
Jonathan Goldstein. 2004. “Relaxed Currency and
Consistency: How to say “Good Enough” in SQL.” In ACM
SIGMOD, (Paris, France, June 13-18). 815-826.

[20] Ragunathan, T., Krishna Reddy, P. 2008. “Improving the
Performance of Read-only Transactions through
Asynchronous Speculation.” (To appear in High
Performance Computing and Simulation Symposium, HPCS
2008, Ottawa, Canada).

