
REDESIGN OF DISTRIBUTED
RELATIONAL DATABASES

A THESIS

Presented to

The Faculty of the Division of Graduate Studies

by

Kamalakar Karlapalem

In Partial Ful�llment

of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

Georgia Institute of Technology

November ����

Copyright c� ���� by Kamalakar Karlapalem



REDESIGN OF DISTRIBUTED

RELATIONAL DATABASES

Approved�

Prof� Shamkant B� Navathe

Prof� Mostafa Ammar

Prof� Edward Omiecinski

Prof� Leo Mark

Prof� Sridhar Narasimhan
�School of Management�

Date Approved by Chairman



To My Grandfather

Sri Karlapalem Lakshmi Narasimham

iii



�d����Z�� n� �� 	X�� c�
�o� G� g�Z�� ���U�

�X�� I�Z�� n� �� i p�o� b� i� d� I��Z�� ���� L�

Sanskrit

� X� � Z� g�� � G� Z�� Q � d	� n� e�� L� f�� Q a
� � Y g� a� S� f�� �� Z�� �
c� �� �N	� Z� e�� � G� g� �I� V� e�� �� Z� S� k� S� c Q�� � a
� � Y g� a� S� f�� Z�� � �
Y� Z� Y Z�� n� �a� X� i� G� m�� a� � Q k� i Z� G� i�� Z�� �
b� i e�� �� N f� e�� � � X��� m�� e�� �� X� � Y g� a� S� f�� Z�� � �

Telugu

Acquiring knowledge �learning� is dependent upon constant

drilling �practice��

Wisdom �intellect� is a result of the past acts �karma��

Endeavor �e�ort� hard work� leads to money� material� and

possessions�

Good luck �destiny� fortune� leads to success�

iv



ACKNOWLEDGEMENTS

Prof� Navathe�s support� guidance� and encouragement has been instrumental for this

work� I am very much grateful for all the help that he has provided to me over last �ve

years� and I do owe him a lot� I consider myself to be very fortunate to have him as my

advisor� I thank Prof� Ammar for his suggestions at crucial times of this work which

helped me to clarify things� and put me in the right direction� Prof� Omiecinski for his

comments and suggestions� and Profs� Narasimhan and Mark for being in the committee

and participating in the discussions� Jorg and George helped me with the implementation

of Markovian decision analysis algorithms� This work would not have been possible with out

the �nancial support from University of Florida� Georgia Tech� National Science Foundation

grant number IRI ���	�
�� Hewlett Packard� and Digital Equipment Corporation�

After being in three places over four years� I have come to know lot of people who have

made my life easy and happy� I thank the D�
T team� Dr� Ravi Vardarajan� Pedro� and

MinYoung for the stimulating discussions� Sharon Grant was always helpful at UF� the

ALLBASE�STAR team at Hewlett Packard� David� Brad� John� Leigh�Ann� and Susan for

all their support during my stay at Cupertino� and the OIT team at Georgia Tech� Ruth

Strausser� Art Vanderberg� and Scott for giving me the material for the case study�

Special thanks to Magdi� Asterio� and Kiran� my colleagues at Georgia Tech� for all

their help� and making my stay here comfortable and enjoyable� There were innumerable

persons at all these three places who have helped me one way or other� and to all of them

my sincere thanks�

This thesis would not have been possible without the motivation and support from my

parents� sisters� and my wife Santhi� My utmost thanks to them�

v



CONTENTS

ACKNOWLEDGEMENTS v

SUMMARY xiii

� INTRODUCTION �

��� Background � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Basic Concepts � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� The Distributed Database Design Process � � � � � � � � � � � � � � � � � � � �

��� Redesign of distributed databases � � � � � � � � � � � � � � � � � � � � � � � � �

����� When to redesign� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

����� How to come up with the new design� � � � � � � � � � � � � � � � � � �

����� How to materialize the new design� � � � � � � � � � � � � � � � � � � 	

��� Application Processing Center � � � � � � � � � � � � � � � � � � � � � � � � � � 	

��� Contributions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 


����� Scope and Limitation � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	 Application of the Proposed Approach � � � � � � � � � � � � � � � � � � � � � ��

� RELATED WORK ��

��� General Comments � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Distributed database design � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Fragmentation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Allocation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Redesign of distributed databases � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Response time analysis � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Markovian Decision Analysis � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

� OVERVIEW OF THE MIXED FRAGMENTATION METHODOLOGY ��

��� General Comments � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


��� Alternative approaches for initial distributed database design � � � � � � � � �


vi



����� Mixed Fragmentation Methodology � � � � � � � � � � � � � � � � � � � ��

��� Grid creation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Vertical partitioning for grid creation � � � � � � � � � � � � � � � � � � ��

����� Horizontal partitioning for grid creation � � � � � � � � � � � � � � � � ��

����� Procedure Horizontal�Partitioning � � � � � � � � � � � � � � � � � � � ��

����� Grid Cells � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

� REPRESENTATION SCHEME FOR MIXED FRAGMENTS ��

��� General Comments � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Representation Scheme for Mixed Fragments � � � � � � � � � � � � � � � � � ��

����� Characteristics of and valid operations on grid cells � � � � � � � � � � �


����� Mapping of grid cells to transactions � � � � � � � � � � � � � � � � � � ��

��� Grid Optimization � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Cost model for merging � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Merging algorithm � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� The case of overlapping fragments � � � � � � � � � � � � � � � � � � � ��

����� The case of contained in fragments � � � � � � � � � � � � � � � � � � � ��

��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

� MATERIALIZATION OF DISTRIBUTED DATABASES ��

	�� General Comments � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

	�� Two approaches to materialize a new design � � � � � � � � � � � � � � � � � � 	�

	�� Representation of Distribution Designs � � � � � � � � � � � � � � � � � � � � � 	�

	���� Intersection of fragmentation schemes � � � � � � � � � � � � � � � � � 	�

	�� Approaches for Materialization � � � � � � � � � � � � � � � � � � � � � � � � � ��

	���� Materialization of a redesigned distributed relational database by au�

tomatic generation of SQL commands � � � � � � � � � � � � � � � � � ��

	���� Materialization with operations on fragments � � � � � � � � � � � � � �	

	�	 Extension � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	�� Cost Model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

	�� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

vii



� EFFICIENT MATERIALIZATION BY USING THE QUERY GENER�

ATOR APPROACH ��

��� General Comments � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Multiple Query Optimization � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Example Illustrating use of MQO � � � � � � � � � � � � � � � � � � � � � � � � ��

��� MQO Algorithm to Materialize Distributed Database Design � � � � � � � � 	


��
 Performance Improvement � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� AVERAGE TRANSACTION RESPONSE TIME ESTIMATION ���

��� General Comments � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� The Distributed Database Environment � � � � � � � � � � � � � � � � � � � � ���

��� Transaction Characteristics � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Estimating the Probability of Contention � � � � � � � � � � � � � � � � � � � ��


��
 A Model For The Locking Mechanism � � � � � � � � � � � � � � � � � � � � � ���

��� Simulation Model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Experiments � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� E�ect of Data Access Time � � � � � � � � � � � � � � � � � � � � � � � ���

����� E�ect of Arrival Rate of Transactions � � � � � � � � � � � � � � � � � ���

����� Evaluation of the Optimal Percentage of Distributed Transactions � ���

������� Practical Applicability � � � � � � � � � � � � � � � � � � � � � ��	

����� E�ect of Number of Data Accesses � � � � � � � � � � � � � � � � � � � ���

��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� A DISTRIBUTED DATABASE REDESIGN METHODOLOGY ���

��� General Comments � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


��� A Model for the Application Processing Center Scenario � � � � � � � � � � � ��


��� Application Classes � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

����� Change points and Execution Duration � � � � � � � � � � � � � � � � ���

����� Calculating the Probability of Change � � � � � � � � � � � � � � � � � ���

��� Generation of Candidate Distributed Database Designs � � � � � � � � � � � � ���

��
 Calculating the Cost Values � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Optimal Policy Vector Generation � � � � � � � � � � � � � � � � � � � � � � � ��


����� Modeling of Redesign Problem � � � � � � � � � � � � � � � � � � � � � ��


viii



��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� MARKETING AND RECRUITING SYSTEM� A CASE STUDY ���

��� General Comments � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Distributed Database Environment � � � � � � � � � � � � � � � � � � � � � � � ���

��� Database Relations and Application � � � � � � � � � � � � � � � � � � � � � � ���

����� De	ning Classes of Applications � � � � � � � � � � � � � � � � � � � � ��


����� Transaction and Relation Characteristics � � � � � � � � � � � � � � � ���

��� Distributed Database Designs � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Prospects � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Recruiters � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Other Relations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Fragmentation and Allocation Schemes for On�line and Batch Appli�

cations � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Application Processing Center Scenario � � � � � � � � � � � � � � � � � � � � �


��
 Cost Values Calculation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

��� Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �



�� CONCLUSIONS ���

A BREAK	 FORM AND CLUSTER OPERATIONS ��


B OPTIMAL POLICY VECTOR GENERATION DETAILS ���

C SELECT STATEMENT DESCRIBING DATA ACCESSED BY TRANS�

ACTIONS ��

BIBLIOGRAPHY ��


VITA ���

ix



LIST OF TABLES

� Representation of Current Design �F�A�� � � � � � � � � � � � � � � � � � � � � ��

� Representation of New Design �F �� A��� � � � � � � � � � � � � � � � � � � � � � ��

	 Minimal Cover for Fragments in the New Design � � � � � � � � � � � � � � � ��


 Intersect for Fragments in the Current Design � � � � � � � � � � � � � � � � � ��

� Workload Parameters � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� System Parameters � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� Maximum Data Transfer for Distributed Transaction Processing � � � � � � ���

 A Redesign Policy � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� Redesign Policies for 	 Applications and 	 Designs � � � � � � � � � � � � � � �	

�� Relation Recruiters � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
	

�� Relation Prospects � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �



�� Relation Events � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

�	 Relation ProsRecr � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

�
 Schedule for Applications and Transactions Executed During the Day � � � �
�

�� Cardinalities of the Relations � � � � � � � � � � � � � � � � � � � � � � � � � � �
�

�� Selectivity of Predicates in the Relations � � � � � � � � � � � � � � � � � � � � �


�� Transaction Initiation Frequencies � � � � � � � � � � � � � � � � � � � � � � � �


� Grid Cells of Relation Prospects with Online�Transactions �A��� � � � � � � ���

�� Distributed Database Design for relation Prospects �A�� � � � � � � � � � � � ���

�� Grid Cells of Relation Prospects with Online�Transactions �A��� � � � � � � ��	

�� Distributed Database Design for relation Prospects �A�� � � � � � � � � � � � ��	

�� Grid Cells of Relation Prospects with Batch Transactions � � � � � � � � � � ��


�	 Distributed Database Design for relation Prospects �A	� � � � � � � � � � � � ��


�
 Grid Cells of Relation Recruiters for Class of Online�Transactions �A��� � � ���

�� Distributed Database Design for relation Recruiters �A�� � � � � � � � � � � ���

�� Grid Cells of Relation Recruiters for Class Online�Transactions �A��� � � � � ���

�� Distributed Database Design for relation Recruiters �A�� � � � � � � � � � � ���

� Grid Cells of Relation Recruiters with Batch�Transactions � � � � � � � � � � ��

�� Distributed Database Design for relation Recruiters �A	� � � � � � � � � � � ��

x



LIST OF FIGURES

� Alternatives for fragmentation and allocation � � � � � � � � � � � � � � � � � ��

� Distributed database design tool reference architecture � � � � � � � � � � � � ��

� Steps in Mixed Fragmentation Methodology � � � � � � � � � � � � � � � � � � ��

� Transaction Speci�cation � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Attribute Usage Matrix � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	 Attribute A
nity Matrix � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Vertical fragments generated by graph�theoretic algorithm � � � � � � � � � � �	

 Predicate Usage Matrix � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� Predicate A
nity Matrix � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Clustering of predicates using graph�theoretic algorithm � � � � � � � � � � � ��

�� Non�overlapping horizontal fragments generation � � � � � � � � � � � � � � � ��

�� Representation of grid cells � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Mapping of Transactions to the Grid Cells � � � � � � � � � � � � � � � � � � � ��

�� Overlapping and Contained�in Fragments � � � � � � � � � � � � � � � � � � � ��

�� Example of overlapping and contained�in mixed fragments � � � � � � � � � � �

�	 Relation Employee � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Grid Cells of the Relation Employee � � � � � � � � � � � � � � � � � � � � � � ��

� Current Design �F�A� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	

�� Current Fragmentation Scheme �F�A� � � � � � � � � � � � � � � � � � � � � � ��

�� New Fragmentation Scheme �F �� A�� � � � � � � � � � � � � � � � � � � � � � � �

�� Representation of Fragmentation Scheme �F �� A�� � � � � � � � � � � � � � � � ��

�� A Hierarchy of Fragment Operations � � � � � � � � � � � � � � � � � � � � � � 	

�� Initial Query Graphs � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� Step � of Multiple Query Optimization � � � � � � � � � � � � � � � � � � � � � 	

�� Step � of Multiple Query Optimization � � � � � � � � � � � � � � � � � � � � � �

�	 Combined optimized query graph � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Local and Distributed Transaction Phases � � � � � � � � � � � � � � � � � � � ���

� Simulation Model For Lock Contention � � � � � � � � � � � � � � � � � � � � � ��

�� E�ect of Data Access Time on Average Transaction Response Time � � � � ���

�� E�ect of Arrival Rate on Average Transaction Response Time� I � � � � � � ���

xi



�� E�ect of Arrival Rate on Average Transaction Response Time� II � � � � � � ���

�� Evaluation of Optimal Percentage Points with Arrival Rate �� trns�sec � � � ��	

�� Evaluation of Optimal Percentage Points with Arrival Rate �� trns�sec � � � ��


�� Optimal Distr Trans Percentage Over CommDelay � � � � � � � � � � � � � � ���

�� E�ect of Change in Number of Local Data Accesses � � � � � � � � � � � � � ���

�	 E�ect of Change in Number of Distributed Data Accesses � � � � � � � � � � ���

�
 Discrete Markov Process and Redesign Policy � � � � � � � � � � � � � � � � � ���

�� Discrete Markov Process Dened by the Optimal Policy Vector � � � � � � � ���

�� Candidate Distributed Database Design �D�� for On�Line Applications �A��� ���

�� Candidate Distributed Database Design �D�� for On�Line Applications �A��� ���

�� Candidate Distributed Database Design �D�� for Batch Applications �A��� � �	�

�� Long Run Discrete Markov Process For Application Processing Scenario I� �	�

�� Long Run Discrete Markov Process For Application Processing Scenario II� �	�

�� A Distributed Database Design�Redesign Tool Architecture� � � � � � � � � � �
�

xii



SUMMARY

Distributed relational databases are becoming a reality now� hence in order provide an

e�cient support for the applications� designing distributed databases becomes an issue

of paramount importance� Distributed database design consists of a fragmentation and an

allocation schema� The fragmentation schema maps the relations of the distributed database

to the fragments of data at individual sites� The allocation schema maps the fragments

to the di�erent sites of the distributed database environment� Changes in the distributed

database environment over a period of time necessitate the redesign of distributed databases�

This thesis develops a practical solution for the problem of design and redesign of dis�

tributed databases in the application processing center environment� The mixed fragmen�

tation methodology is used for generating the fragmentation scheme for the distributed

databases� A representation scheme for the grid cells and the notion of a regular fragment

is developed� This representation scheme is used for developing the algorithms for merging

the grid cells and materialization of the distributed databases� Two approaches �Query

Generator Approach and Operator Method	 have been developed for the materialization of

distributed databases� A cost model is developed to compare these two approaches� Multi�

ple query optimization techniques are used to increase the e�ciency of the query generator

approach� The cost of applications may be approximated in terms of the average cost of

transactions that constitute an application� A simulation model is presented to estimate

the average transaction response time in the distributed database environment� A set of

experiments were run to evaluate the e�ect of changes in some parameters �like arrival rate�

communication delay� number of data accesses	 on the average transaction response time�

The Markovian decision analysis technique is used to develop a methodology for redesign

of distributed databases in the application processing center environment� This technique

generates an optimal policy that associates a speci
c distributed database design with each

execution of the application� This technique guarantees that this policy will process all the

applications e�ciently in the long run� A case study of a real life application processing

scenario is presented to illustrate this methodology�

xiii



CHAPTER �

INTRODUCTION

��� Background

Relational database system technology has been under development for more than two

decades� At present there are many e�cient and high throughput relational database sys�

tems� During these two decades most of the high throughput database processing was done

on either hierarchical database management system �e�g�� IMS� or network database man�

agement system �e�g�� IDMS and DMS��		�� or 
at �le systems� The relational database

technology is at a stage where it can e�ciently process high throughput database applica�

tions� There are various reasons for this�

� relational database system technology has matured� there are very e�cient commercial

implementations of relational database systems� for example ORACLE �of ORACLE

Corp��� INGRES �of Ask Systems�� DB �of IBM�� Rdb �of Digital�� ALLBASE �of

HP�� etc� These systems are being widely used for day to day data processing�

� powerful multiprocessor based high end workstations have further enhanced the power

of the relational database technology as a clear separation between the logical and

physical levels facilitates e�cient parallel processing of database operations� E�g��

ORACLE on KSR� machine�

� relational databases support non�navigational data access �meaning that the rela�

tionships between the database instances are not hard coded in the implementation

model� which enables easy conceptualization and implementation of the distributed

relational database system�

� with the advent of standards for remote data access �RDA� and SQL access� it is now

possible to access data from di�erent relational database systems� E�g�� an application

can access tuples of relations from ORACLE and INGRES databases�

�



� there will be a movement from centralized mainframe processing to distributed rela�

tional database processing on local area networks with high end workstations� This

will happen without losing the throughput for the transaction oriented database appli�

cations� In fact� this environment will be scalable and more adaptable to the changes

in the application processing requirements�

� Client�Server architecture helps in keeping main database functionality on the server

and applications can be distributed across clients� We are likely to see a number of

variations �e�g� one client�many servers� etc�� that will be limited cases of distributed

database processing�

Most of the work in distributed relational database systems has concentrated on the

systems aspect� not much has been done on the design and management of distributed

databases� It is imperative that this problem will confront the users of the distributed

database technology fairly soon�

��� Basic Concepts

A distributed database is a collection of data that belongs logically to the same system

but is physically spread over the sites of a computer network� The system that manages

the distributed databases is known as a distributed database management system� An

implementation of a distributed database management system will consist of a set of coop�

erating database management systems each of which manages data physically located at a

site� The layer of software that supports this cooperation forms the distributed database

management system� A distributed database system refers to the distributed database

management system together with the distributed databases� A homogeneous distributed

database system is one wherein all the database systems at di�erent sites are the same� A

Distributed Relational Database System is a distributed database system wherein all of the

database systems are relational and homogeneous in that they are essentially �versions of�

the same DBMS from the same vendor� A distributed database environment refers to the

distributed database system� network� and the computers at various nodes�

Distributed database systems are becoming a reality now� a number of computer man�

ufacturers and database vendors are releasing distributed relational database system prod�

ucts� There is a need to support high performance on�line and batch processing of high

volume transactions� In any distributed database there are two main factors that a�ect the

	



performance of the applications� namely� number of disk accesses and data transfer cost or

communication delay� For a given distributed database environment the performance of the

applications is dependent on the design of the distributed database� There are two ways by

which performance of the applications can be improved by the distributed database design�

Fragmentation� Fragmentation is the process of clustering relevant columns and tuples

accessed by an application into a fragment� This reduces the amount of irrelevant data

accessed by the application thus reducing the number of disk accesses� The result of

the fragmentation process is a set of fragments de�ned by a fragmentation scheme�

In relational databases� a fragment can be either vertical� horizontal or mixed� A

vertical fragment of a relation is a projection of a set of columns �including a key� of

the relation� A horizontal fragment is a selection of a set of tuples of the relation� A

mixed fragment is either a selection of tuples from a projection of a set of columns

of a relation or a projection of a set of columns from a set of selected tuples of the

relation�

Allocation� Allocation is the process of placing the fragments generated by the fragmen�

tation scheme at the sites of the distributed database systems so as to minimize the

data transfer cost and the number of messages to process a given set of applications�

The result of an allocation process is an allocation scheme�

The fragmentation and allocation schemes de�ne the distribution design for a distributed

database� The global conceptual schema is produced by using the standard techniques of

requirements analysis� view analysis and integration �BCN	
�� In addition to the standard

requirements analysis for the conceptual design of a distributed database� data is collected

about the transaction characteristics for the distribution design like� the columns they

access� the frequency with which they are initiated from a site� the predicates de�ning the

tuples that the transactions access� and the applications the transactions belong to� Note

that dierent applications initiate dierent sets of transactions and the distribution design

is dependent on the columns and tuples of the relations accessed by the transactions�

�



��� The Distributed Database Design Process

The distributed database design process consists of four phases�

Initial Design� The initial design deals with generating the fragmentation and allocation

scheme for the distributed database by making use of the transaction characteristics

collected at the requirements analysis phase so as to optimize the global transaction

processing costs�

Final Design� The �nal design corresponds to the actual production database that is

used to support the applications� The initial design is implemented on a distributed

database system and is evaluated for its performance� This implemented database is

�ne tuned based on the distributed connectivity� client�server architecture scenarios

and physical characteristics such as the amount of main memory and disk space avail�

able� Once this implemented database is stable� it becomes the �nal design that is

used to support the applications�

Redesign� In a distributed database environment over a period of time� there may be a

degradation in the performance of the applications accessing the distributed database�

This is due to the changes in the distributed database environment classi�ed as follows�

Physical� The changes pertaining to the physical systems of the distributed database

environment are classi�ed as the physical changes� Types of physical changes

include� change in network topology� new nodes being added� changes in �pro�

cessing speed or power� of a node� or placing a more e	cient disk pack at a

node�

Logical� Changes in the distributed database environment that are not physical in

nature are termed as the logical changes� Logical changes include� migration of

applications
transactions from one node to another� change in the logical model

of the database� change in the frequency of execution of an application� adding

or deleting applications being executed on the distributed database�

These changes necessitate redesign of the distributed databases in order to keep

the performance of the applications
transactions being supported by the distributed

database system from degrading� In this phase� the changes in the distributed database

�



environment are taken into consideration to generate new fragmentation and alloca�

tion schemes� The redesign problem has been classi�ed in �WN��� into limited re�

design and total redesign� Limited redesign is the case where the allocation scheme

changes but not the fragmentation scheme� Total design on the other hand considers

the case where both the fragmentation and the allocation schemes change� The focus

of this research is on the total redesign of the distributed databases as elaborated in

the next section�

Materialization of Redesign� Materialization of a new design based on the current de�

sign for an existing populated distributed relational database after a total redesign

has been an open research problem� Materialization of a distributed database design

is de�ned as a process of global restructuring of the populated local databases in order

to achieve conformance with the logical de�nition of the distributed database� Two

elegant solutions to this problem are presented in this thesis�

Of the above four phases of the distributed database design process	 much work has

been done on the initial design problem	 a limited case of the redesign problem has been

addressed	 and some aspects of the materialization problem have been addressed with re�

spect to the limited redesign problem�

��� Redesign of distributed databases

The problem we address in this thesis is that of Redesign of Distributed Relational Databases�

This problem can be broadly divided into three parts	 namely


����� When to redesign�

There are three scenarios which require the redesign of the distributed database� The �rst

scenario is that of corrective redesign	 the case where there is a deterioration in the appli�

cation�s performance because of the changes in the distributed database environment that

had already taken place� Corrective redesign requires evaluating these changes in the dis�

tributed database environment to generate a new distribution design� The second scenario

is that of preventive redesign	 the case where the distributed database administrators

know beforehand the changes that will take place in the distributed database environment�

This allows them to switch to a new design before the actual change occurs	 thus preventing

�



a deterioration in the performance of the applications� The third scenario is the case when

the distributed database administrator wants to do a adaptive redesign� That is� monitor

some parameters in the distributed database environment and initiate a redesign whenever

the value of the parameter falls below certain level� An example of such a parameter is the

transaction response time�

The corrective redesign is the easiest to do� This is because the distributed database ad�

ministrator knows beforehand about the changes that took place in the distributed database

environment� and uses this information to redesign� The preventive redesign is tougher than

corrective redesign when the details about the types of changes taking place are known� but

not when these changes take place� Adaptive redesign is the toughest to do� This is because

it is di�cult to detect relevant changes in the parameters being monitored� A distributed

relational database environment is complicated� there are many interdependent logical and

physical parameters and it is very di�cult even to analyze the environment so as to detect a

change in some parameter that re�ects deterioration in the performance of the applications

on the distributed database system� In centralized database systems� periodic tuning �like

changing the bu	er sizes� rede
ning indexes� is undertaken to enhance the performance of

the database system to support the applications more e�ciently� In the distributed database

system� not only does the DBA have to undertake the periodic tuning by each of its local

database systems� but also the global reorganization of data so as to e�ciently support the

applications� This is pertinent to the case where there are physical and logical changes

taking place in the distributed database environment�

����� How to come up with the new design�

The problem here is to take into consideration the changes in the distributed database envi�

ronment� and to modify the current design so as to e�ciently support distributed database

applications� The initial design methodology which has been developed is so e�cient that

it can be used as a methodology for redesigning distributed databases� No single algorithm

can take into consideration all the di	erent types of changes in the distributed database

environment and incrementally modify the current design� Even if this was possible� the

complexity of this algorithm would be much worse than that of the initial design method�

ology�

�



����� How to materialize the new design�

The initial design methodology is used to generate a new design based on the changes in the

distributed database environment� This design needs to be materialized� Materialization

means global restructuring of component databases of the distributed database so as to

conform to the new fragmentation and allocation schemes as de�ned by the new distribution

design� This is done by executing a set of algorithms� In this thesis a set of algorithms are

developed and their correctness is established�

��� Application Processing Center

An application processing center is a data center which has computer resources� database

systems that supports processing of a set of di�erent classes of applications� Traditionally�

these application processing centers used a centralized database management system like

IMS on a mainframe� However� the cost of maintaining mainframes has increased� and the

reliability� processing power of local area networked high end workstations has increased�

With that there will be a move towards shifting application processing from centralized

database systems to distributed database systems�

This would require a design of a distributed database that is optimal for all the classes

of applications� But the optimality of a single design for all classes of applications cannot

be guaranteed� Due to the di�erent data and processing requirements for each class of

applications� there will exist an optimal distributed database design for each class of ap�

plications which will outperform a single optimal distributed database design for all classes

of applications� Moreover� not all applications from di�erent classes are executed at the

same time� Typically� there is a schedule for executing the applications� where each class

of applications is processed during some intervals of time with some probability� Some

applications which are always executed �i�e� with probability � 	
� are known as perpetual

applications� Applications which are executed at some speci�c intervals of time are known

as non�perpetual applications�

A typical example of an application processing center is that of a bank or insurance

company that processes various classes of high transaction oriented database applications�

Examples of perpetual applications are teller machine transactions� or insurance claims�

Examples of non�perpetual applications are those executed daily like day�time applications

for processing loans� or creating new accounts� versus night time batch applications for

�



generating consolidated teller machine activities� Other applications include weekly salary

processing� monthly account statement generation� and yearly W�� form generation�

An application processing center is the life line for the business organization� It is

basically a production center that processes information for the organization� Hence appli�

cations being executed in this center are well de�ned� well designed and well tested� It is

very critical for the organization that these applications be executed in a timely and e�cient

manner� It is for this reason that this scenario is used to develop our redesign methodology�

The general distributed database processing scenario is very complicated because of the

dynamic changes which make it very di�cult to decide when to redesign� Also� there are

ill de�ned applications that are being processed in an ad�hoc fashion which complicate the

problem of when to redesign�

��� Contributions

Consolidation of Mixed Fragmentation Methodology

The mixed fragmentation methodology was developed as part of the Distributed Database

Design Tool Project �D�
T 	 at the University of Florida� Early work on mixed fragmentation

methodology consisted of development of graphical algorithms for vertical and horizontal

fragmentation� Grid cells were generated by simultaneously applying both vertical and

horizontal fragmentation schemes on the relation� Some heuristic based algorithms were

developed for vertical and horizontal merging of grid cells based on the cost of accessing the

grid cells� In this thesis� a representation scheme for grid cells� and a notion of well formed

expression and regular fragment was developed� This concept of regular fragment is used

in developing a single algorithm for merging grid cells to form regular mixed fragments and

prove its correctness� The representation scheme is also used to develop a solution to the

problem of materialization of the distributed databases�

Materialization of Distributed Databases

Any redesign of a distributed database results in a change of fragmentation scheme and
or

allocation scheme� This requires that the new fragmentation and
or allocation scheme be

materialized� The mixed fragmentation methodology provides a basis for an intuitive so�

lution to the materialization of distributed databases problem� The representation scheme

makes the task of proving the correctness of the algorithms simple� Two approaches for

materializing the distributed databases were developed� The �rst approach was to generate

�



a set of SQL �SELECT � � �� statements to de�ne the fragments of the distributed database

and execute them on the distributed database system� A query generator algorithm is

developed and its correctness is proved� The task of materialization rests solely on the

distributed database management system� In the second approach �operator method� a set

of operations are de�ned on the fragments �like split� merge� move� etc��� The material	

ization is done by generating a sequence of operations on the fragments to be executed at

each site of the distributed database environment� In this thesis� algorithms were devel	

oped to generate these sequence of operations� and their correctness was proved� A cost

model is developed to calculate the time required to materialize the distributed database

for both the approaches� The operator method is shown to perform better than query gen	

erator approach when no proper indexes are de�ned on the fragments� The e
ciency of the

query generator approach was increased to make it comparable to the operator method by

developing a multiple query optimization algorithm�

Estimation of Average Transaction Response Time

An event	based simulation model is developed to estimate the average transaction response

time in a distributed database environment� This model takes into account the cyclic

dependence between the lock contention and the average transaction response� A set of

experiments were conducted to analyze the e�ect of changes in di�erent parameters of

the distributed database environment on average transaction response time� The tradeo�

between the amount of time spent of data access and communication delay is analyzed�

This simulation model is used to estimate the cost of executing a set of applications on a

given distributed database design�

A Distributed Database Redesign Methodology

A redesign methodology is developed for the application processing center scenario� An op	

timization technique �Markovian Decision Analysis� is used to generate an optimal redesign

policy that speci�es the distributed database design that needs to be used for each applica	

tion initiated� This optimization technique guarantees that this policy will process all the

applications e
ciently� and will require a redesign only if it is bene�cial on the long run�

This solution for the redesign problem is based on the mixed fragmentation methodology�

the algorithms to merge grid cells� the simulation model to estimate the average transaction

response time� and the algorithms to materialize the distributed databases� A case study

is presented to illustrate the applicability of this methodology to a set of applications of a

system similar to that in use at Georgia Tech�

�



����� Scope and Limitation

The techniques presented in this thesis are applicable only if mixed fragmentation method�

ology is used for distributed database design and redesign� The representation scheme of

mixed fragments is based on the mixed fragmentation methodology� The allocation of mixed

fragments is still an open problem� Therefore� the distributed design methodology based

on mixed fragmentation approach is an incomplete methodology� A major limitation is

that there is no true distributed relational database management system in the commercial

world that can be used to experimentally test the e�ectiveness of techniques presented in

this thesis� This is the reason that a simulation model had to be developed for estimating

the average transaction response time� In this model� a pessimistic concurrency protocol is

used �i�e� the contending transactions are blocked�� The estimation of average transaction

response time with optimistic or semi�optimistic concurrency control protocols is not ad�

dressed� The Markovian decision analysis is based on the assumption of the Markov process

and the knowledge of discrete change points� But application processing scenario in real�

ity may be a continuous or semi�Markovian processes� This thesis does not address these

scenarios� Though a cost model is presented to calculate the cost of materialization of a

redesign� experimental studies are still needed to observe the actual time to materialize the

distributed database design using both the methods� The system issues for implementing

the operator method to materialize the distributed database are not addressed�

��� Application of the Proposed Approach

The early work on distributed database design was done during the �	
���	
� time period�

During that time a set of algorithms for vertical fragmentation� horizontal fragmentation

and allocation were developed� But over the last decade little work was done in this area�

The problems of horizontal fragmentation� allocation� and redesign are the toughest prob�

lems in this area� There was work done in limited redesign and complexity analysis of

algorithms for materializing limited redesign� The mixed fragmentation methodology along

with the problems addressed in this thesis forms the basis for providing a viable solution

for distributed database design and redesign methodology in application processing center

environment�

��



The solution consists of the following steps�

� The algorithms developed for mixed fragmentation are used to generate a set of can�

didate designs for a set of applications�

� The simulation model is used to estimate the average transaction response time for

each class of applications executed on each of the candidate distributed database

designs�

� The algorithms for materialization are used to calculate the cost of redesign from one

candidate distributed database design to another�

� The Markovian decision analysis is used to generate the optimal policy vector that

speci�es the design which is to be used by application that is initiated�

The operator method generates a set of relation transfer operations that can used to

evaluate the e�ciency of algorithms that schedule the redistribution of data� The algo�

rithms to materialize the distributed databases can be used independent of the redesign

methodology presented in this thesis� As this is the �rst piece of work in total redesign of

distributed databases� the solutions provided in this thesis are subject to further analysis

and optimization� A real life application processing scenario is used to demonstrate the

solutions proposed in this thesis�

The rest of the thesis is organized as follows� The related work is surveyed in Chapter

�� An overview of mixed fragmentation methodology is presented in Chapter 	� A repre�

sentation scheme for mixed fragments and algorithms for merging the grid cells to mixed

fragments is presented in Chapter 
� The algorithms to materialize distributed databases

are presented in Chapters � and �� A simulation model to estimate average transaction

response time and a results of set of experiments conducted are presented in Chapter �

A distributed database redesign methodology is presented in Chapter �� A case study to

demonstrate the viability of this methodology is presented in Chapter �� Finally� conclusions

and future research are presented in Chapter ���

��



CHAPTER �

RELATED WORK

��� General Comments

In this chapter a survey of the relevant work in the areas of distributed database design�

performance analysis of distributed transaction processing and applications of Markovian

decision analysis is presented� The solution to the redesign problem requires techniques

from the above areas needs to be combined to develop an integrated methodology�

��� Distributed database design

The survey of work in developing fragmentation� allocation� redesign� materialization algo�

rithms for distributed database design is presented �rst�

����� Fragmentation

Data fragmentation is performed during the design of a distributed database to improve the

performance of the transactions� In order to improve transaction processing performance�

fragments must be �closely matched� to the requirements of the transactions� In the design

of a multi�site distributed database� fragments are allocated� and possibly replicated� at the

various sites�

The work related to this topic can be classi�ed into work on vertical fragmentation�

horizontal fragmentation� and other fragmentation techniques�

Vertical Partitioning� Ho�er and Severance 	HS
�� measure the anity between pairs

of attributes and try to cluster attributes according to their pairwise anity by using the

bond energy algorithm �BEA� developed in 	MSW
���

Navathe et al� 	NCWD��� extend the results of Ho�er and Severance and propose a

two phase approach for vertical partitioning� During the �rst phase� they use the given

input parameters in the form of an attribute usage matrix and transactions� to construct

the attribute anity matrix on which clustering is performed� They cluster the attribute

��



a�nity matrix by using a Bond Energy Algorithm �HS���� This algorithm clusters large

values of the matrix along the sides of the diagonal� This gives rise to partitioning the matrix

into sub�matrices along the diagonal so that the values within the sub�matrix are more

homogeneous than between sub�matrices� This partitioning is done by using an empirical

objective function	 the partitioning depends on the characteristics of this function� The sub�

matrices generated by 
rst level partitioning can be again partitioned to generate partitions

at a 
ner level of detail� This iterative binary partitioning stops at the discretion of the

designer�

Cornell and Yu �CY��� apply the work of �NCWD��� to relational databases� They

propose an algorithm which decreases the number of disk accesses to obtain an optimal

binary partitioning� They show how the knowledge of speci
c physical factors can be

incorporated into the overall fragmentation methodology�

Ceri	 Pernici and Wiederhold �CPW��� extend the work of �NCWD��� by considering it

as a DIVIDE tool and by adding a CONQUER tool� Their CONQUER tool again extends

the same basic approach in the direction of adding details about operations and physical

accesses similar to �CY���� This approach focuses on the decomposition of the design process

into several design subproblems and provides no algorithmic improvement to the process of

vertical partitioning itself�

Navathe and Ra �NR��	 developed a graph�theoretic algorithm based on linearly�connected

trees	 and possibility of cycles	 to detect all the vertical fragments of the relation in one

iteration�

Chu and Ieong �CI��	 develop a vertical partition method that optimizes the number of

disk accesses based on clustering of attributes accessed by transactions	 then they compare

their method with other methods�

Chu �Chu�� takes a transaction oriented view of partitioning the attributes of a relation�

He presents the concepts of su�cient and support to design the algorithms to vertically

partition a relation� He also considers the problem of choosing the access path for the

partitions generated�

Muthuraj et al� �MCVN�� address the problem of n�ary vertical partitioning by deriving

a general purpose objective function based on achieving �ideal� clustering that corresponds

to a minimal cost� This objective function is used for developing heuristic algorithms that

are shown to satisfy the objective function� This objective function is also used to compare

the previously proposed algorithms�

��



Horizontal Partitioning� Ceri� Negri and Pelagatti �CNP��� analyze the horizontal parti�

tioning problem� dealing with the speci�cation of partitioning predicates and the application

of horizontal partitioning to di	erent database design problems


Ceri� Navathe and Wiederhold �CNW��� is the �rst de�nitive work on distribution de�

sign
 In this paper they chose to develop an optimization model for horizontal partitioning

without replication in the form of a linear integer zero�one programming problem
 They

proposed that horizontal partitioning may be addressed independently from vertical parti�

tioning reducing the overall complexity of the distribution design process


Yu et al
 �YSLS��� propose an adaptive algorithm for record clustering� which is con�

ceptually simple and highly intuitive
 However� the adaptive approach does not use the

given transaction information that is useful for partitioning� thus it cannot be used for the

optimal design of distributed databases


Shin and Irani �SI�� make use of the knowledge about the data stored in the relations

along with user queries to infer the predicates de�ning the horizontal fragments
 A many�

sorted language has been extended to represent the queries and knowledge about the data

stored in the relations compatibly


Other Partitioning Techniques Apers �Ape��� considers the fragmentation problem

together with the allocation problem
 In his approach� the fragmentation scheme is the

output of the allocation algorithm
 Thus the fragmentation scheme is not known before

the allocation
 The emphasis of Aper�s work is on allocation with fragmentation as a by

product of the design


����� Allocation

The allocation problem has been �rst treated in terms of �le allocation problem in a multi

computer system� and later on as a fragment allocation problem in distributed database

system
 Note that �le allocation problem does not take into consideration the semantics of

the processing being done on the �les� whereas fragment allocation problem must take into

consideration this aspect


�Chu�� was the �rst to study the problem of �le allocation with respect to multiple �les

on a multi processor system
 He presented a global optimization model to minimize overall

processing costs under the constraints of response time and storage capacity with a �xed

number of copies of each �le
 Casey �Cas��� distinguished between updates and queries on

�les
 Eswaran �Esw��� proved that Casey�s formulation was NP complete
 He suggested

��



that a heuristic rather than an exhaustive search approach is more suitable�

Ramamoorthy and Wah �RW��� analyzed a �le allocation problem in the environment of

a distributed database� Wah developed a heuristic approximation algorithm for the simple

�le allocation problem and the generalized �le allocation problem� They had also proposed

a model for �le migration or reallocation that is identical in formulation to the �le allocation

problem�

Ceri� Martella and Pelagatti �CMP�	� consider the problem of �le allocation for typical

distributed database applications with a simple model of transaction execution and without

considering horizontal partitioning�

Apers �Ape��� considers the allocation of the distributed database to the sites so as to

minimize the total data transfer cost� The author devised a very complicated scheme to

allocate the relations by �rst partitioning them into an innumerable number of fragments�

and then allocating them� The author integrated the system dependent query processing

strategy with the logical model for allocating the fragments�

Gavish and Pirkul �GP�
� GP��� address the combined problem of data and computer

location� They basically develop an optimization model with a number of parameters� whose

solution gives the location of both the data and computers� In this model it is very di�cult

to incorporate the query processing strategies of the distributed database management

system and the semantics of the applications accessing the data� Even if this were included

the resulting optimization model will have large number of variables� nonlinearity� and can

solve only small sized problems�

��� Redesign of distributed databases

In this section the preliminary work done in redesign and materialization of distributed

databases is presented�

Redesign� Navathe and Wilson �WN��� classify the redesign problem into limited redesign

and total redesign� They provide an iterative method to reallocate the fragments based on

the change in sites from which the transactions are initiated� Other than this piece of work�

there has been no work in this area to the best of our knowledge�

Materialization RiveraVega �VRVN��� RVVN�	� worked on the problem of e�ciently

scheduling the data��le transfer operations among nodes of a network so as to redistribute

data for a limited distributed database redesign� Other than this there has been no work

��



done on the materialization of distributed database in case of total redesign�

��� Response time analysis

The model for analyzing the distributed transaction response time proposed by P� S� Yu� et

al�� �YDR���� YDR���� YDCI��� DYB��� CDY	
� at IBM T� J� Watson Research Center

is used to simulate the distributed transaction response time� Yu et al� developed models

to analyze the e�ect of various parameters on distributed IMS database environments� A

major bottleneck in the database system is the lock manager and the concurrency control

mechanism which is adapted by the database management system� They develop a math

ematical model in which they represent the transaction response time as a sum of time

spent on CPU� I�O and the waiting time due to contention for accessing the same data �i�e�

contention for the locks�� They estimate the time spent on CPU� I�O and contention by

using the queuing model�

There has been work done on analytical studies of speci�c concurrency control schemes�

but they are not applicable to our research goal because they do not consider the e�ect

of data and resource contention� Moreover� Yu�s work is applicable for a wide variety of

concurrency schemes and environments� whereas the earlier work by �TSG��� TGS���� is

applicable to centralized systems with optimal or pessimistic concurrency control� Detailed

simulation studies are reported in �ACL���� but are based on a �xed multiprogramming

level �MPL�� whereas in this thesis an open queuing network model with no �xed MPL

is considered� Carey and Livny �CL��� also perform a simulation study of the distributed

database concurrency control performance algorithms� Again� they do this study with

a �xed MPL� and �xed percentage of local transactions ��
��� whereas in this thesis a

response time study in an open system with the complete range of 
 to �

� of local

transactions� and a range of disk i�o access times� communication delay� and arrival rates is

dealt with� This study is the most exhaustive study undertaken with respect to the response

time analysis of distributed transactions�

��� Markovian Decision Analysis

Howard� in his PhD thesis �How�
� developed the Markov decision analysis as a dynamic

programming technique to generate an optimal policy that selects the best alternative state

��



change for a Markov process where each state change has many alternatives� and each alter�

native has a di�erent bene�t value� This technique had been used in industrial engineering

and operations research� Recently this technique had been applied to computer systems

related problems by Nicol and Reynaolds �NRJ�	
 in optimal dynamic remapping of data

parallel computations� and by Shin� Krishna and Lee �SKL��
 on optimal dynamic control

of resources in a distributed system� The details of the above two papers are not presented

as they do not deal with database system related problems� Note that both these papers

deal with a dynamic decision process� which is essentially what is needed for the redesign

process in the �application processing center scenario�

��� Summary

It can be seen from the above that there is very little work done on the redesign of dis�

tributed relational databases problem� Most of the work done has been in the area of

developing algorithms for generating the fragmentation and allocation algorithms� There is

work done on classifying the redesign problem and materializing the new allocation scheme

in the limited redesign case� Therefore� we believe that this dissertation is the �rst piece

of work that provides an overall methodology for redesigning the distributed databases in

the application processing center environment� The solution for this problem uses tech�

niques developed in the areas of simulation and performance analysis� and Markov decision

analysis� The relevant work has been surveyed in this chapter�

��



CHAPTER �

OVERVIEW OF THE MIXED FRAGMENTATION METHODOLOGY

��� General Comments

In this section an overview of the mixed fragmentation methodology for the initial dis�

tributed database design is given� This methodology was developed in the distributed

database design tool �D�
T � project at the University of Florida� The methodology consists

of two phases namely� grid creation and grid optimization� The grid creation phase is

described in this chapter and the grid optimization phase is described in the next chapter�

This methodology will also be used in generating new distributed database designs�

In the next section di�erent alternatives for designing distributed databases are de�

scribed� In the subsequent sections a brief description of the mixed fragmentation method�

ology� and the vertical and horizontal fragmentation algorithms for grid creation are pre�

sented�

��� Alternative approaches for initial distributed database design

There are di�erent alternative approaches that have been proposed for the initial design

phase of the distributed database design process� Some aspects of this initial design namely�

vertical and horizontal fragmentation has been researched before� In Figure 	 the compre�

hensive list of alternatives available for the initial design are illustrated� The word 
grid�

is used to indicate the partitioning of a single relation achieved by simultaneously apply�

ing both horizontal and vertical partitioning� Other terms in that �gure are explained as

follows�

fragmentation � allocation refers to constructing fragments as well as deciding where

to allocate them as a single decision problem�

grid optimization refers to a 
merging operation� with respect to grid cells which com�

bines the elementaryminimal grid cells into larger ones for minimizing the transaction

	�



+

EDCBA

Allocation
Optimization

Local Site 

+ Allocation
Optimization

Sites
Allocation to 

Grid Cells 

By Merging
Grid OptimizationAllocation

Fragmentation
Fragmentation

MixedMixed
Fragmentation

MixedFragmentation
Allocation

Fragmentation

Fragmentation and Allocation

Figure �� Alternatives for fragmentation and allocation

processing cost�

Our approach corresponds to the path C in this �gure� Paths A and B leave vertical and

horizontal partitioning as two separate problems as exempli�ed in �CNW��	 NCWD�
�	 the

order in which they should be attacked is unspeci�ed� Hence the resulting methodology is

incomplete� Alternative A is a very hard problem to deal with since both fragmentation

and allocation are simultaneously addressed� Alternatives C and D refer to the mixed

fragmentation based on grid creation� The alternative C is the chosen approach because

allocation is regarded as an entirely separate problem to be solved on the basis of much

more detailed cost information� The fragmentation of a relation into grid cells and grid

optimization are considered to be problems governed by the nature of data and its use by

applications	 whereas allocation deals with the problem of physical placement accounting

for detailed transaction cost modeling� Alternative D is avoided again because it is more

��



complicated to deal with grid optimization and allocation together�

GRID OPTIMIZER

GRID CREATOR

GLOBAL SCHEMA

PHYSICAL SCHEMA

Site Dependent

INFORMATION
TRANSACTION

CONSTRAINS
DISTRIBUTION

Site Independent

ALLOCATOR

LOGICAL SCHEMA

PHYSICAL DESIGNER

Figure �� Distributed database design tool reference architecture

Figure � shows the Distributed Database Design Tool �D�
T � reference architecture which

is used in our paper� The input information to D�
T is the global schema which consists

of a set of relations� together with information about the important transactions on the

proposed database� As reasoned in the previous work �CNW	
� NCWD	��� it is not nec

essary to collect information on ���� of the expected transactions �that would of course

be impossible�� Since the 	��� rule applies to most practical situations� it is adequate to

��



supply the ��� of the heavily used transactions which account for about ��� of the activ�

ity against the database� The other input to the D�
T is the distribution constraints which

include preferences or special considerations designers�users may have that would in	uence

partitioning and allocation� In this paper we are going to deal with only the GRID CRE�

ATOR and GRID OPTIMIZER modules� The allocation problem has been considered in


Ra��� and is not included because of space constrains�

GRID CREATOR is composed of two modules they are the vertical and the horizontal

partitioning modules for grid creation� The output of the GRID CREATOR is a

grid corresponding to a global relation� The grid suggests all possible ways in which

the global relation in a distributed database may be partitioned� In this paper� each

element of the grid is called a cell�

GRID OPTIMIZER After de�ning a grid� the GRID OPTIMIZER performs merging as

much as possible according to the merging algorithms� The merging of the grid cells

is an anti�fragmentation procedure� Having created the cells in a top�down fashion as

the �minimal� fragments of a relation� it is considered whether the grid cells should

be combined in a bottom�up fashion� Merging is considered desirable if it reduces the

overall transaction processing cost� The representation scheme presented in Section

��� is used to develop an algorithm to generate the mixed fragments� the criteria for

merging is to minimize the total number of disk accesses to execute the transactions

developed in 
CY����

Note that in this thesis a single �global� relation mixed fragmentation dealt with� or one

relation mixed fragmentation at a time is dealt with� The treatment of allocation should

bring in the e�ect of processing several relations together by a transaction� Based on

Figure �� the proposed methodology for mixed fragmentation using a grid can be described

as follows�

����� Mixed Fragmentation Methodology

This procedure involves all activities prior to allocation in the path C of Figure �� The steps

of the mixed partitioning methodology are illustrated in Figure �� Note that the vertical

and horizontal partitioning steps can be done concurrently�

��



Mixed Fragments Generation

Representation of Grid Cells

Vertical PartitioningHorizontal Partitioning 

Specification of Input

Figure �� Steps in Mixed Fragmentation Methodology

�� Speci�cation of inputs� In this step� the following inputs are speci�ed�

�a	 schema information� relations� attributes� cardinalities� attribute sizes� predi


cates� etc�

�b	 transaction information� name� frequency� attribute usage� predicate usage� etc�

The attribute usage matrix is a matrix containing transactions as rows and at


tributes as columns� Element �i� j	 � � if transaction i uses attribute j� else it

is �� The transactions are also classi�ed as Retrieval� and Update� types�

�c	 distribution constraints� any predetermined partitions or �xed allocation of data�

�d	 system information� number of sites� transmission costs� etc� This information

is used particularly to solve the allocation problem�

Figure � shows the transaction speci�cation for the example being considered in this

paper� The predicate descriptions are presented in the section ������

�� Vertical partitioning for grid� In this step all candidate vertical fragments are deter


mined� The graphical algorithm �NR��� is used for generating all fragments in one

iteration� The overview of this algorithm is given in Section ����

��



Transactions Attributes Predicates Frequency Sites of Origin

T� a�� a�� a� p�� p� �� s�� s�

T� a�� a�� a�� a� p�� p� �� s�� s�

T� a�� a�� a�	 p�� p� �� s�

T� a��a��a� p�� p� �� s�

T� a��a�� a�� a�� a�� a�� a� p�� p� �� s�� s�� s�

T
 a�� a� p
� p� �� s�� s�

T� a�� a� p�� p� �� s�

T� a�� a�� a
� a�� a�	 p
� p� �� s�� s�� s�

Figure �	 Transaction Speci
cation

�� Horizontal partitioning for grid� In this step� all candidate horizontal fragments are

determined� A method for this step is outlined in Section ������ Note that the sequence

of steps � and � can be changed�

�� Populating the system catalog with the representation of grid cells� The representation

scheme for the fragments and the grid cells will be used to generate the representation

of the grid cells and to populate the system catalog� This representation scheme will

be used by the algorithm to generate the mixed fragments�

�� Mixed fragment generation� The number of disk accesses required to execute a trans�

action will be used as a measure to come up with an optimal set of mixed fragments so

as to minimize the total number of disk accesses required to process the transactions�

This is a relevant measure which has been used in earlier studies CY��� CI��� Chu���

to come up with an optimal set of vertical fragments� The concept of regular frag�

ments with the cost measure of number of disk accesses develops a good solution to

the mixed fragmentation problem�

��� Grid creation

����� Vertical partitioning for grid creation

Vertical partitioning is the process that divides a relation into sub�relations called ver�

tical fragments containing groups of the original attributes CNW��� CP��� NCWD���

MCVN���� Most of the previous algorithms have started from constructing an attribute

��



a�nity matrix from attribute usage matrix� Attribute a�nity matrix is an n�n matrix for

the n�attribute problem whose �i� j� element equals the �between�attributes� a�nity that

is the total number of accesses of transactions referencing both attributes i and j� An iter�

ative binary partitioning method has been used 	NCWD
�� CY
� CPW

� based on �rst

clustering the attributes and then applying empirical objective functions or mathematical

cost functions to perform the fragmentation�

The graph theoretic algorithm presented in 	NR
�� starts from the attribute a�nity

matrix by considering it as a complete graph called the �a�nity graph� in which an edge

value represents the a�nity between the two attributes� and then forms a linearly connected

spanning tree� By a �linearly connected tree� that is� a tree that is constructed by including

one edge at a time such that only edges at the ��rst� and the �last� node of the tree would

be considered for inclusion� �A�nity cycles� in this spanning tree are formed by including

the edges of high a�nity value around the nodes and �growing� these cycles as large as

possible� After the cycles are formed� partitions are easily generated by cutting the cycles

apart along �cut�edges�� Details of this algorithm as well as explanation of why it produces

reasonable vertical fragments may be found in 	NR
��� Henceforth for ease of reference the

above algorithm is referred to as MAKE�PARTITION algorithm�

The major feature of this algorithm is that all fragments are generated by one iteration

in a time of O�n�� that is more e�cient than the previous approaches� This algorithm has

been implemented and has been adapted it for the horizontal partitioning �Section �������

Attributes
Transactions � � � � � �  
 � �� Type Access Freq

T� � � � � � � � � � � R acc�� ��

T� � � � � � � � � � � R acc�� ��

T� � � � � � � � � � � R acc�� ��

T� � � � � � � � � � � R acc�� ��

T� � � � � � � � � � � W acc�� ��

T� � � � � � � � � � � W acc�� ��

T� � � � � � � � � � � W acc�� ��

T� � � � � � � � � � � W acc�� ��

Figure �� Attribute Usage Matrix

��



Attributes
Attributes � � � � � � � 	 
 ��

� �� �� �� � �� � �� �� �� �

� �� ��� �� � �� � �� ��� �� �

� �� �� ��� �� �� �� �� �� ��� ��

� � � �� �� � �� � � � ��

� �� �� �� � �� � �� �� �� �

� � � �� �� � �� � � � ��

� �� �� �� � �� � 	� �� �� �

	 �� ��� �� � �� � �� ��� �� �


 �� �� ��� �� �� �� �� �� ��� ��

�� � � �� �� � �� � � �� ��

Figure �� Attribute Anity Matrix

Figure � shows the attribute usage matrix and Figure � shows an example of an attribute

anity matrix� Figure � shows the result of applying our algorithm to the attribute anity

matrix� In Figure � the nodes refer to attributes of the relation �i�e� node i refers to

attribute ai�� The resulting vertical fragments are�

���� �a�� a�� a��

���� �a�� a�� a�� a��

���� �a�� a	� a�
�

Here the major advantages of this method over the previous approaches are summarized�

�� There is no need for iterative binary partitioning� The major weakness of iterative

binary partitioning used in �NCWD	�� is that at each step two new problems are

generated increasing the complexity� furthermore� termination of the algorithm is

dependent on the discriminating power of the objective function�

�� The method obviates the need for using any empirical objective functions as in

�NCWD	��� As shown by �CY	�� the �intuitive� objective functions used in �NCWD	��

do not necessarily work well when an actual detailed cost formulation for a speci�c

system is utilized�

��



40
40

40

15

7550

50

60

110

75
75

115

Start Node
10

1

2

3
4

5

6

7

8

9

Figure �� Vertical fragments generated by graph�theoretic algorithm

�� The method requires no complementary algorithms such as the SHIFT algorithm of

�NCWD�	
�

	� The complexity of this approach is O�n�� as opposed to O�n�logn� in �NCWD�	
�

In the following subsection it is shown how this algorithm may be applied to horizontal

partitioning�

����� Horizontal partitioning for grid creation

Horizontal partitioning is the process that divides a global relation into subsets of tuples

called horizontal fragments �CNP�� CNW�� CP�	
� Ceri Negri and Pelagatti �CNP��


analyze the horizontal partitioning problem dealing with the speci�cation of partitioning

predicates� Ceri Navathe and Wiederhold �CNW��
 propose an optimization model for

designing distributed database schemas with all meaningful candidate horizontal partitions�

This approach developed an IP approach to select an optimal candidate horizontal partition

for each relation�

In this thesis however the selection of an optimal horizontal partitioning for each

relation in the database is not considered� But the focus is on identifying all the candidate

��



horizontal partitions� For this a horizontal partitioning methodology which will use an

algorithm similar to the MAKE�PARTITION algorithm in �NR��� is proposed� In order to

use the MAKE�PARTITION procedure of our vertical partitioning algorithm we consider

only those transactions whose processing frequency is large �that is	 those transactions that

make up �
� of the database activity�� These transactions access tuples of the relations

based on some predicates� These predicates are specied as simple predicates �CNP����

Another consideration in horizontal partitioning is that of derived partitioning as stated in

�CP���� The predicates which give rise to derived partitioning �we call it derived predicates�

are considered in the same way as the simple predicates� The scope of this paper is limited

by assuming that all simple and derived predicates are previously determined�

As explained earlier with respect to Figure �	 path C	 the focus of this approach	 is on

single relation mixed fragmentation� Hence join predicates of the form R��A�R��B which

deal with a pair of relations do not enter into the picture here� They are very much a

part of the allocation phases and are motivated by minimizing the e�ort and cost of joins�

In contrast	 horizontal partitioning approaches used in systems like Bubba �CABK��� or

Gamma �DGG���� attempt to achieve parallelism of join queries�

The horizontal partitioning methodology is illustrated by using a simple example below�

The inputs are a set of transactions and a corresponding set of predicates as follows �assume

D�no and SAL are attributes of a relation��

�� T� � D�no � �
 �p��	 SAL � �
K �p��

�� T� � D�no � �
 �p��	 SAL � �
K �p��

�� T� � D�no � �
 �p��	 SAL � �
K �p��

�� T� � �
 � D�no � �
 �p��	 SAL � �
K �p��

�� T� � D�no � �� �p��	 SAL � �
K �p��

�� T� � D�no � �
 �p��	 SAL � �
K �p��

�� T� � D�no � �� �p��	 SAL � �
K �p��

�� T� � D�no � �
 �p��	 SAL � �
K �p��

Note that the above set of predicates do not span all the tuples of the relation� tuples

with SAL��
k will not be accessed by any of the above transactions�

��



The algorithm starts with the predicate usage matrix� The predicate usage matrix

represents the use of predicates in important transactions� The predicate usage matrix is

illustrated in Figure �� Each row refers to one transaction where a ��� entry in a column

indicates that the transaction uses the corresponding predicates� Whether the transaction

uses the relation for retrievals or updates can also be captured by another column with R

and U for retrievals and updates respectively�

Predicates
Transactions p� p� p� p� p� p� p� p� Type Access Freq

T� � � � � � � � � R acc� � ��

T� � � � � � � � � R acc� � ��

T� � � � � � � � � R acc� � ��

T� � � � � � � � � R acc� � ��

T� � � � � � � � � W acc� � ��

T� � � � � � � � � W acc� � ��

T� � � � � � � � � W acc� � ��

T� � � � � � � � � W acc� � ��

Figure �� Predicate Usage Matrix

Predicate a	nity is de
ned in a manner similar to attribute a	nity �NCWD��� Figure

�� shows a predicate a	nity matrix generated from the predicate usage matrix in Figure ��

The numerical value of the �i� j� element in this matrix gives the combined frequency of all

transactions accessing both predicates i and j and is obtained the same way as for vertical

partitioning� The value � of the �i� j� element indicates that predicate i implies predicate

j� the value � of the �i� j� element indicates that predicate j implies predicate i� and the

value � represents the �close� usage of predicates� Two predicates i and j are �close� when

the following conditions are satis
ed�

�� i and j must be de
ned on the same attribute�

�� i and j must be jointly used with some common predicate c� and

�� c must be de
ned on an attribute other than the attribute used in i and j�

This is reasonable because predicates i� j� and c are di�erent from one another and

thus two fragments generated by predicates i� c and predicates j�c are considered �closely

��



related� since they both involve predicate c� In the above example� p� and p� are �close�

because of their usage with common predicate p� in transaction T� and T�� These two

relationships are introduced to represent logical implication �� and logical connectivity

���� between predicates�

Predicates
Predicates p� p� p� p� p� p� p� p�

p� �� ��� ��� 	 	 	 
� 	

p� �� ��� ��� 	 	 	 �	 	

p� ��� ��� � 	 	 
� 	

p� 	 	 � ��� ��� 	 ��

p� 	 	 	 ��� ��� 	 �	

p� 	 	 	 ��� ��� 	 	

p� 
� �	 
� 	 	 	 	

p� 	 	 	 �� �	 	 	

Figure �� Predicate A�nity Matrix

����� Procedure Horizontal�Partitioning

�� Construct a predicate usage matrix� Predicate usage matrix represents the use of

predicates in important transactions� The predicate usage matrix for the example ��

predicates and � transactions� is shown in Figure �� Each row refers one transac�

tion� the ��� entry in a column indicates that the transaction uses the corresponding

predicates�


� Form a predicate a�nity matrix� Predicate a�nity is generated in a similar manner

as attribute a�nity� Figure � shows a predicate a�nity matrix generated from the

predicate usage matrix in Figure �� The numerical value of the �i� j� element in this

matrix gives the combined frequency of all transactions accessing both predicates i

and j� The value ��� of the �i� j� element indicates that predicate i implies predicate

j� the value ��� of the �i� j� element indicates that predicate j implies predicate i�

and the value ��� means that two predicates i and j are �similar� in that both are

used jointly with some predicate c� That is� transaction T� uses predicates i and c

and transaction T� uses predicates j and c�


�



�� Perform clustering of predicates� It is done by using the modi�ed version of the

MAKE�PARTITION graphical algorithm in �NR���� This modi�ed algorithm is ob�

tained by adding the following heuristic rules	


a� A numerical value 
except zero� has higher priority than the values �� �� and

�� when selecting a next edge� This is because� more importance is placed on

a�nity values which are obtained from transaction usage rather than on logical

connectivity among the predicates�


b� In comparisons involved in checking for the possibility of a cycle or extension

of a cycle� cycle edges with a�nity values ��� ��� and �� are ignored�

For example� in Figure ��� in comparing edge 
p�� p�� with edges of the cycle


p�� p�� p�� the edge 
p�� p�� which has a�nity �� is ignored� This is because the

a�nity values ��� �� and �� represent implicit logical relationships among

the predicates and not actual a�nity between the predicates� These implicit

relationships are used to reduce the number of horizontal fragments�


c� �� and �� are considered to have higher a�nity value than �� since the

latter only represents logical connectivity between the two predicates through

their usage with a common predicate�


d� If there are two �� in a column corresponding to predicate pk� one implied by

predicate pj � then the entry 
i� k� has higher priority than the entry 
j� k� � either

if the entry 
i� j� is equal to ��� or if the entry 
i� j� is equal to ��� In other

words� if pi � pj � pk then j has higher priority than i else pj � pi � pk then

i has higher priority than j�

In this step a set of subsets of predicates are obtained� In this example� by using

the above rules and the MAKE�PARTITION algorithm� three subsets of predicates

as shown in Figure ��	 
p�� p�� p��� 
p�� p��� 
p�� p�� p�� are obtained�

�� Optimize predicates in each subset� In this step predicate inclusion and predicate

implication are considered to minimize the number of predicates� In our example� the

�rst subset 
D�no � ��� D�no � ��� SAL� ��K� is re�ned into 
D�no � ��� SAL�

��K� since D�no � �� � D�no � ��� the second one 
D�no � ��� ��� D�no � ��� is

also re�ned into 
D�no � ��� since ��� D�no � �� � D�no � ��� but the last one


D�no � ��� D�no � ��� SAL� ��K� has no change� Note that this optimization can

��



be done before step �� But in this thesis� this step is performed here in order to allow

pair of predicates such as p� and p� in which one �i�e� p�� implies another �i�e� p�� to

be grouped in di�erent clusters in step �� The three clusters of predicates produced

in this step called �cluster sets	� are listed in Figure 
��

3
p

2
p

p
8

p
7

p
6

p
5

p
4

p
1

{D#<15, D#>40, SAL<40K}
{D#>20}
{D#<20, SAL>40K}
Cluster Sets produced:

<==

==>

D#<10 SAL>40K

D#<15

D#>40

SAL<40K

*

50

40

35

30<D#<50

D#>20

*

D#<20

50

25

Figure 
�� Clustering of predicates using graphtheoretic algorithm

�� Compose predicate terms� The cluster sets are �rst evaluated to determine �the least

common attribute	� In our example� since SAL does not appear in cluster set � �

corresponding to the second cluster of predicates�� it is the least common attribute�

Note that D� appears in all three sets� A table called the �predicate term schematic

table	 is now considered by placing in the �rst column the chosen attribute with its

appropriate ranges to cover that attribute exhaustively� In our example� two entries

�




are created� SAL � �� and SAL � ��K for the SAL attribute� Then� the next to

least common attribute is applied and then write its appropriate ranges that appear

in the cluster sets against each entry for the �rst column� Note that these ranges may

be overlapping� In our example� D� is the next attribute� Its ranges applicable to

the cluster sets are� D� � 	
 or D� � �� coupled with SAL � ��K �from cluster

set �� and D� � �� coupled with SAL � ��K �from cluster set 	� The D� � ��

predicate appearing in cluster set � must be written twice into the table against each

entry for SAL� This resulting predicate term schematic table is shown at the top in

Figure 		� Now predicate terms are constructed from the above tables as follows�

Each horizontal entry in the table gives rise to one predicate term� If predicates refer

to the same attributes then they are OR�ed �disjunction� otherwise they are AND�ed

�conjunction� The resulting predicates are as follows�

�a SAL� ��K AND D�no � ���

�b SAL� ��K AND �D�no � 	
 OR D�no � ���

�c SAL� ��K AND D�no � ���

�d SAL� ��K AND D�no � ���

�� Perform fragmentation� There is one horizontal fragment per predicate term� Thus

the number of horizontal fragments will at most be the number of predicate terms plus

one because there is one remaining fragment which is the negation of the conjunction

of all predicate terms�

�� Restructure overlapping horizontal fragments� The result of predicate partitioning

may give rise to overlapping horizontal fragments� If merging of these fragments has

to be considered� then the ADJUST function is needed to generate non�overlapping

fragments� This should not a�ect the transaction processing because in case of vertical

merging these horizontal fragments are again considered for merging to generate opti�

mal horizontal or mixed fragments� This merging is done to minimize the transaction

processing cost�

The resulting horizontal fragments are�

�a� �SAL � ��k AND �D� � ��

��



)
4

p,
3

p(

(p
3
, p

4
)

SAL > 40k

SAL > 40k

Predicate Term Schematic Table 

ADJUST

)
7

p,4, p
3

p

)
7

p,
2

p,
1

p

)
8

p,
5

p

)
8

p,
6

p,
4

p,
3

p

(

(

(

(

e

d

c

b

a

FragmentsNonoverlapped

SAL < 40k

(p

SAL > 40k

D#>20

D# < 15 OR
D# >40

D#<20

D#>20
7

8
)

p( )

(
(
p
p5
6

)
)

(p
1

, p
2

)

ELSE

SAL < 40k AND D#>20

SAL < 40k AND D# < 15

AND D#<20

AND D#>20

ELSE

Figure ��� Non�overlapping horizontal fragments generation

�b�� �SAL � �	k� AND �D
 � ���

�c�� �SAL � �	k� AND �D
 � �	�

�d�� �SAL � �	k� AND �D
 � �	�

�e�� ELSE

The attractive features of this approach are as follows�

�� Fragments are based on actual predicates by applying implication between predicates�

the number of fragments is reduced�

��



�� The vertical and horizontal fragmentation are treated in a similar manner� and the

algorithm for the vertical fragmentation with changes to incorporate ��� �� can be

used for horizontal fragmentation�

�� �	
 integer programming formulation is not needed� thus the complexity of the solution

approach is reduced�

�� By using a clustering of predicates � a relatively small number of horizontal fragments

are generated� The approach taken by �CNP�� can generate �n number of horizontal

fragments for n simple predicates�

It should be noted that the complexity of this algorithm is dominated by the step ��

and thus will be O�n�� for n predicates as in the vertical partitioning algorithm in Section

����
� A smaller value of n indicates a good understanding of the heavily used predicates

by users� A comparable value for the number of predicates can be derived by clustering the

tuples accessed by the transactions based on some attribute domain values� and de�ning

these clusters as a predicate each� For example� if all transactions access the tuple based

on a single attribute� then the attribute domain values accessed can be plotted on a real

line� and clustered into sets� by using discriminant� each such cluster can be de�ned by

a predicate� This approach can be extended to multi	dimensional case� Thus there is an

approach to de�ne the predicates by observing the attribute domain values used to access

the tuples of the relation�

����� Grid Cells

In the last two subsections the algorithms for generating the vertical and horizontal frag	

mentation schemes have been described� Once the horizontal and vertical fragments are

generated� the grid cells are generated by either applying the horizontal fragmentation

scheme on each of the vertical fragments or by applying the vertical fragmentation scheme

on each of the horizontal fragments� Therefore� each grid cell belongs to exactly one hori	

zontal fragment and one vertical fragment� If the vertical fragmentation scheme generates

n vertical fragments and the horizontal fragmentation scheme generates m horizontal frag	

ments then n �m grid cells will be generated�

��



��� Summary

In this section a brief description of the grid creation phase of the mixed fragmentation

methodology for the initial distributed database design tool has been given� The set of

grid cells are generated by simultaneously applying the vertical and horizontal fragmen�

tation scheme to a relation� The vertical fragmentation schemes are generated by using

a common graph�theoretic algorithm make partition� In �Ra��� NR��	 the above algo�

rithm is explained in detail� These algorithms alleviate the need of using complicated linear

programming model for deriving horizontal fragments and iterative binary partitioning for

deriving vertical fragments� These algorithms are e
cient and generate all the candidate

vertical and horizontal fragments in one iteration�

��



CHAPTER �

REPRESENTATION SCHEME FOR MIXED FRAGMENTS

��� General Comments

In this section a representation scheme for the grid cells and the mixed fragments that

are formed by merging the grid cells are developed� This representation scheme will be

used in the materialization of redesign� The mixed fragmentation methodology facilitated

the development of this representation scheme� This representation is used for developing

algorithms to merge the grid cells into mixed fragments in this chapter� The procedure for

merging the grid cells into a mixed fragment is based on the validity and correctness of the

merging process and the resultant mixed fragments� This is because it should be possible to

de�ne the generated optimal mixed fragments as relations in relational databases without

introducing null values� In the next section preliminary ideas on a representation scheme for

grid cells are presented� After that a cost model for merging the grid cells and an algorithm

to merge grid cells is developed�

��� Representation Scheme for Mixed Fragments

A grid is created by applying both the horizontal and vertical fragmentation schemes on the

relation� Let V � ��� �� � � � � n� be the set of vertical fragments and H � �a� b� � � � � x� be the

set of horizontal fragments of the relation respectively� The grid generates a set of grid cells

wherein each grid cell belongs to exactly one horizontal and one vertical fragment of the rela	

tion� The set of grid cells are represented as ��a� �b� � � � � �x
 �a� �b� � � � � �x
 � � � 
na� nb� � � � � nx��

For the examples presented in Sections ����� and ������ the vertical and horizontal fragmen	

tation algorithms produced three vertical fragments and �ve horizontal fragments respec	

tively� In Figure �� the grid cells formed by simultaneously applying both these horizontal

and vertical fragmentation schemes on the relation are represented�

The set of grid cells are classi�ed as horizontal grid cells or vertical grid cells� The

set of vertical fragments of a given horizontal fragment form horizontal grid fragments�

�



eee 321

321

1 2 3

321

1 2 3

a a a

b b b

c c c

d d d

Figure ��� Representation of grid cells

For a horizontal fragment p they are represented as ��p� �p� � � � � np�� In Figure ��� the set

��b� �b� 	b� forms the set of horizontal grid cells for the horizontal fragment b� The set of

horizontal fragments of a vertical fragment are known as vertical grid cells� The vertical

grid cells of a vertical fragment i are represented as �ia� ib� � � � � ix�� For example� in Figure

�� the set of grid cells ��a� �b� �c� �d� �e� form the vertical grid cells for the vertical fragment

�� Two binary operations concatenate �k� the horizontal merging operator and union

�
S
� the vertical merging operator on the set of horizontal grid cells and vertical grid cells

respectively are de
ned� Concatenate operator is a special case of join operator where only

corresponding tuple id�s of the relations are matched� Note that all the relations involved

in the concatenate operation have same number of tuples and that these relations have the

same set of tuple identi
ers�

Given two vertical grid cells ip and iq� the union of ip and iq is represented as �ip�q� �

ip
S

iq and given two horizontal grid cells ip and jp the concatenation of ip and jp is repre

sented as �ip� jp� � ipkjp� The binary operations
S

and k are commutative and associative

over the set of vertical grid cells and horizontal grid cells respectively�

	�



����� Characteristics of and valid operations on grid cells

The grid cells will be represented as �� where � � �� �� � � � � n and � � a� b� � � � � x� � is the

�column� index and � is the �row� index for a grid cell� A well formed expression over the

set of grid cells is de�ned as follows	

De�nition � A well formed expression w is de�ned as follows�

�� w � ��� is well formed where � � �� �� � � � � n and � � a� b� � � � � x� r
w� � �� is the

representation of w�

�� w � ����k���� is well formed if �� �� �� and �� � ��� r
w� � 
���� � ����� is its

representation�

w � ����

S
���� is well formed if �� � �� and �� �� ��� r
w� � 
���������

� is its represen�

tation�

�� w� � ��kw is well formed if there exists a grid cell represented by ��

� in r
w�� r
w�� �

r
w�
S
�� is its representation�

w� � ��

S
w is well formed if there exits a grid cell represented by ��� in r
w�� r
w�� �

r
w�
S
�� is its representation�

�� Any number of possible invocations of the above set of rules�

This de�nition incorporates the discipline that is to be imposed while merging the grid

cells during the grid optimization phase of the mixed fragmentation methodology� In Figure

��� the grid cells �a and �b can be merged 
using the rule � above� since �� � �� � �� and

�� � a� and �� � b� implies ��a�b� � �a
S
�b�� whereas the grid cells �a and �c cannot be

merged� Note that in forming the well formed expression� two grid cells are concatenated

only if they both are horizontal grid cells of the same horizontal fragment� and a union

of two grid cells is allowed only if they both are vertical grid cells of the same vertical

fragment� Hence the conditions on the grid cells 
��� in the rules � and  of the de�nition

above� From the above de�nition of the well formed expression� a set of valid operations

which need to be performed on the grid cells to generate a set of legal mixed fragments

are derived� In general� a well formed expression w is represented as 
��A�
� ��A�

� � � � � �pAp
�

where �j � �j�� for � � j � p � � with each �i representing a vertical fragment and each

Ai representing a set of vertical grid cells of vertical fragment �i participating in the union�

�



De�nition � A regular well formed expression is a well formed expression w �

���A�
� ��A�

� � � � � �pAp
� such that A� � A� � � � �� Ap and �j � �j�� � � where � � j � p�

The �rst condition states that the set of vertical grid cells Ai participating in the forma�

tion of the fragment is the same for all vertical fragments �i	 The second condition states

that all the vertical fragments �i in the fragment are contiguous	

De�nition � Fragment is the result of a well formed expression over a set of grid cells�

A regular fragment is the result of a regular well formed expression over the set of grid

cells�

For example
 in Figure ��
 the grid cells �a
 �b
 �a and �b form a regular fragment

���a�b�
 ��a�b��
 whereas the fragment ���a�b�
 �b� formed by merging the grid cells �a
 �b
 �b

is not regular	 It should be noted that each regular fragment corresponds to a table in the

relational database	 If the fragment is not a regular fragment
 it will be di�cult to represent

it as a single relation without introducing null values	

Each grid cell belongs to exactly one horizontal and one vertical fragment and hence

each grid cell is bounded by columns in the vertical fragment and the predicate de�ning the

horizontal fragment it belongs to	 A fragment has been de�ned as the result of a well formed

expression over the set of grid cells	 The attributes of a regular fragment are columns �given

by the union of the columns of all vertical fragments in the well formed expression� of the

fragment and the binding predicate �given by the disjunction of all the predicates de�ning

the horizontal fragments in the well formed expression� of the fragment	 All tuples in

the fragment satisfy the binding predicate	 The system catalog of the distributed database

system needs to store and manage the metadata describing these attributes or characteristics

of a fragment	 The system catalog also stores and maintains the representation scheme along

with the fragment names	

A transaction projects a set of attributes from a relation and selects tuples from the

relation based on some conditions on the attributes of the relation de�ned by the predicates	

Only those transactions that access single relations are considered	 In case of transactions

accessing multiple relations
 there has to be either a join or union of relations	 In case

of union there is no condition spanning multiple relations
 but in case of join there is at

least one join condition that spans two relations	 Since the join condition spans all the

tuples of both relations that satisfy the condition imposed by other predicates pertaining

�



to the individual relations respectively� The join condition does not e�ect the horizontal

partitioning schemes of the relations�

The span of a transaction t is de�ned as S �t� � f�C�� C�� � � � � Cn
�� �P�� P�� � � � � Pm�g	

where C�� C�� � � � � Cn are columns being projected	 and P�� P�� � � � � Pm are the predicates

used in conditions to select the tuples being accessed by the transactions� Note that the

partitioning the vertically based on attribute �column� a
nities and horizontally based on

predicate a
nities means that the columns Ci�s and predicates Pj �s belong to some set of

vertical fragments C �t� � f�t where Ci � �t� i � �� � � � � � ng and horizontal fragments P

�t� � f�t where Pj � �t� j � �� � � � � � mg respectively�

Theorem � Transaction Accesses Regular Fragment

The set of grid cells f�t�t where �t � C �t� and �t � P �t�g form a regular fragment�

Proof� Let the set P �t� for a transaction t be f�t
�
� �t

�
� �t

�
� � � ��tmg � A	 be the set of

horizontal fragments accessed by the transaction t�

Let f�t
�
� �t

�
� �t

�
� � � � � �tng be the set of vertical fragments accessed by transaction t�

Then for each of the vertical fragments �ti the transaction t accesses the tuples across

the horizontal fragments A	 because the predicates de�ning the conditions for �ltering the

tuples of the transaction t span the horizontal fragments in A�

Hence the transaction accesses all the grid cells de�ned by f�t
�A� �

t
�A� �

t
�A� � � � � �

t
nAg and

this is a representation of a regular fragment� Therefore	 any transaction t accesses a set of

grid cells representing a regular fragment� �

De�nition � Given f� and f� as two fragments with their representations r� and r� re�

spectively� The intersection of two fragments� f� intersection f� as the fragment f�
T
f�

whose representation is given by r�f�
T
f�� � f��j���r� and ���r�g�

Theorem � Regular Fragment Intersection Closure Intersection of two regular frag�

ments is a regular fragment�

Proof� Let f� and f� be two regular fragments with representations r� and r� respectively�

Let r� � ���A�
� ��A�

� � � � � �pAp
� where A� � A� � � � � � Ap and �j � �j�� � � where

 � j � p�

��



and

r� � ��
�

�A
�

�

� �
�

�
A

�

�

� � � � � �
�

qA
�

q
� such that A

�

� � A
�

� � � � � � A
�

q and �
�

j � �
�

j�� � � where

� � j � q�

If r�
T
r� is empty then it is a regular fragment�

Let r�
T
r� be not empty	 then there exists �� such that �� � r� and �� � r��

This implies that there exists some i and some j such that ����iAi
and ����

�

jA
�

j

�

This implies that Ai

T
A

�

j �� � which implies that Ai

T
A

�

j �� �� � i� j�

Let B � Ai

T
A

�

j for some i and j�

Let I � f�B j �B � r�
T
r�g� Let �� be the smallest value of � � I and

let �� be the largest value of � � I �

Therefore �� � ��� Then by the de
nition of fragments f� and f� it follows that

r�f�
T
f�� � f��B� � � � � �kB � � � � � ��Bg where �� � k � �� �That is� k � f��� �� � �� � � � � �� �

�� ��g��

This representation is that of a regular fragment� Hence the intersection of two regular

fragments is a regular fragment� �

����� Mapping of grid cells to transactions

The grid cells after the grid creation phase of the initial design are represented as G � f��

where � � �� �� � � � � n and � � a� b� � � � � xg� The transactions accessing the grid cells are

represented as T � fTi where Ti accesses the relation Rg�

Let T be a function T � G �� T � be a function that maps the grid cells �� to the

transactions Ti which accesses them� Figure �� shows the mapping of transactions to the

grid cells for our example�

With respect to our example� T ��a� � fT�� T�g� T ��b� � fT�g� T ��c� � fT�g� T

��a� � fT�� T�g� T ��b� � fT�� T�g� T ��c� � fT�g� T �a� � fT�g� T �d� � fT�g� and

for the rest its ��

De
ne set T 	�
 � f�� j T ���� �� �g�

Therefore� from the above example the set T 	�
 � f�a� �b� �c� �a� �b� �c� a� dg�

De
ne T 	�
 � f��i�i � �j�j
� j T ��i�i�

T
T ��j�j

� �� �g�

This de
nes two grid cells ��i�i � �j�j
� which are accessed by at least one transaction Tk�

Therefore from the above example the set T 	�
 � f��a� �a�� ��a� a�� ��b� �b�g�

��



8T

T5 5T

T1 T2

T3

the grid cell
Trxn’s accessing

Grid Cell

8TT4 T6

1a 2a 3a

T4

1

T7

2 3b b b

1 2 3c c c

1 2 3d d d

1 2 3e e e

Figure ��� Mapping of Transactions to the Grid Cells

In general� de�ne�

T �k� � f��i��i�
� �i��i�

� � � ��i�k����i�k���
� �ik�ik

	 j
Tj�k
j�� T ��ij�ij

	 �� �g where k �

�� 
� � � � � card�V 	 � card�H	� �ij � f�� 
� � � �ng and �ij � fa� b� � � �xg and �ij�ij
�s are all

distinct�

Represent

T �k� � f�fk� 	� �f
k
� 	� � � � � �f

k
m	g� k � �� 
� � � � � card�V 	� card�H	

where each fki � ��i��i�
� �i��i�

� � � ��i�k����i�k���
� �ik�ik

	�

With respect to the example above� T ��� � ff�� � f
�
� � f

�
�g where f�� � ��a� 
a	 and

f�� � �
a� �a	 and f�� � ��b� 
b	�

Moreover note that� T ��� � T ��� � � � �� T ���� � �� This is because no transaction

accesses more than two fragments� In general� there can be transactions accessing the

complete relation�

��� Grid Optimization

In this section� a cost model to evaluate the merging decision is �rst described� After which

the algorithms to merge the grid cells to optimal mixed fragments are presented�






����� Cost model for merging

Let the number of tuples �cardinality of the grid cell�� the length of the tuple �in case there

are variable length columns the average length of tuple� be known for each grid cell� The

page size and the prefetch blocking factor are assumed to be the same constant across the

distributed database environment and known in advance� Then the number of disk accesses

taken by a transaction to access a grid cell by using segment scan is given by

Number of accesses � �Cardinality��LengthOfTuple�
��pagesize��PreFetchBlockingFactor��

The number of disk accesses required for a transaction by using an clustered index is�

Number of accesses � �Cardinality��selectivity��LengthOfTuple�
�pagesize�

The number of disk accesses required for a transaction by using an non�clustered index

is

Number of accesses � �Cardinality��Selectivity��

For a merged regular fragment represented by f��A� ��A� � � � � �nAg its cardinality is the

sum of the cardinalities of the vertical grid cells in A and the length of its tuple is the sum

of the lengths of tuple� of the horizontal grid cells f��� ��� � � � � �ng� But for the purposes of

deciding whether to merge the grid cells or not� the above formulae are used� For a regular

fragment f �

The number of disk accesses N �s�f� required by set of transactions �s to access the

fragment using segment scan is given by�

N �s�f� �
P

t��s

�Cardinality�ft���LengthOfTuple�ft��
�pagesize��prefetchblockingfactor� freqt

The number of disk accesses N �c�f� required by set of transactions �c to access the

fragment using a clustered index is given by�

N �c�f� �
P

t��c

�Cardinality�ft���Selectivity�ft���LengthOfTuple�ft��
�pagesize� freqt

�Note that this is an approximate value that can be smaller or larger than the actual value depending

on the implementation of the storage manager�

	




The number of disk accesses N
�u
�f� required by set of transactions �u to access the

fragment using a non�clustered index is given by�

N �u�f� �
P

t��u
�Cardinality�ft���Selectivity�ft��freqt

Note that in the above formulae the Cardinality and LengthOfTuple values depend

on the transaction t and the freqt denotes the frequency of executing the transaction t per

unit interval of time�

Let R �f� denote a fragment f which is not merged �i�e� it is a loose collection of grid

cells�� Let f denote the merged fragment�

In order to decide whether or not to merge the grid cells to form a mixed fragment

the total number of disk accesses required by all the transactions� using di�erent indexing

schemes and segment scan are considered� If the merging of grid cells results in a smaller

number of disk accesses then the grid cells are merged else not�

That is� if�

N �s�f� 	 N �c�f� 	 N �u�f� � N � �

s

� R �f�� 	 N � �

c

� R �f�� 	 N � �

u

� R �f��

then merge the grid cells� The CPU cost is ignored as it is very small compared to the

disk I
O cost�

����� Merging algorithm

The motivation for merging grid cells is to increase the transaction processing e�ciency�

this is done by reducing the total number of disk accesses needed for processing all the

transactions� A transaction can access one or more grid cells forming a regular fragment�

also a grid cell can be accessed by one or more transactions� There are di�erent types of

accesses that can be used by the transactions namely� clustered index� non�clustered index

and segment scan� Therefore only the sets of grid cells that are accessed by at least one

transaction are considered� For each such set� we check whether they can be merged to

form a regular fragment� If so� these sets of grid cells can be potentially merged�

The algorithm considers the merging possibilities in the sets of grid cells fk
i
� T �k�

where k � �� � � � � � card�V ��card�H� and j � �� �� � � � � kn� Let M be the sets of grid cells

that can be merged to form regular fragments� Then the algorithm for grid optimization is

as follows�

��



Merging Possibilities��

�� Let M � ��

�� For k � �� �� � � � � card�V �� card�H�� consider T �k�	

�a� For each set of grid cells �fk
i
� in T �k� which forms a regular fragment� if

N�s�f� 
N�c�f� 
N�u�f� � N� �

s

�R�f�� 
N� �

c

�R�f�� 
N� �

u

�R�f�� ���

then merge the grid cells else not�

�b� If �fk
i
� is to be merged then M � M

S
�fk

i
��

M is the set of sets of grid cells fk

i
which are possible candidates for merging� But some

of these merging possibilities �fk

i
� may have some grid cells common with other merging

possibilities�

Claim � The algorithm Merging Possibilities�� generates all the mixed fragments�

Justi�cation� The above claim is supported by the following points	

�� The step �� of the algorithm initializes the set of possible mixed fragments to an

empty set�

�� The steps ��a� and ��b� are executed for each of the sets of grid cells de�ned by �fk

i
� �

T �k� and the following points are validated	

�a� The fact that the set of grid cells fk

i
form a regular fragment can be checked by

using the de�nition of the well formed expression� If the representation of the

well formed expression satis�es the condition for regular fragment� then the set

of grid cells fk

i
forms a regular step and Equation � is tested�

�b� For a set of grid cells fk

i
if equation � is satis�ed then it implies that the number

of disk I�Os is less if the set of grid cells fk
i
are merged to form a mixed fragment�

The reason for this conclusion is presented in the Section ������

�c� In step ��b�� only those sets of grid cells fk

i
that reduce the number of disk I�Os

to process all the transactions are included in the set M�

��



�� Therefore� the set M consisting of sets of grid cells fk

i
� all of which form mixed frag�

ments� Since all the possible sets of grid cells fk

i
accessed by at least one transaction

are tested to check if they form a regular fragment� and if the Equation � is satis�ed

for it to be included in set M � The set M consists of all those sets of grid cells

that form a mixed fragment� nothing more and nothing less� �

The above algorithm does generate an overlapping set of mixed fragments� That is� a

set of mixed fragments wherein each grid cell may belong to one or more mixed fragments�

Note that while forming the sets T �k�� a grid cell can belong to more than one sets of grid

cells fk
i
� the mixed fragments generated by the above algorithm can be overlapping� Since

mixed fragments so generated can be overlapping� the following two ways to decompose the

overlapping mixed fragments into a set of non�overlapping mixed fragments are considered�

The �rst case is the one in which each of the two mixed fragments have at least one grid cell

which is not present in the other �overlapping case�� The second case is where all grid cells

belonging to one mixed fragment are contained in the other mixed fragment �contained�in

case��

����� The case of overlapping fragments

Let f and g be two fragments that can be merged from the set M de�ned above� such

that f
T
g �	 �� Note that f and g are both regular fragments� Let r 	 f

T
g� which is also

a regular fragment� De�ne f� 	 f � r and g� 	 g � r
 note that f�
T
g� 	 �� f� �	 �

and g� �	 �� Now� in order to generate non�overlapping fragmentation scheme� r must be

considered separately� and f� or�and g� must be considered separately�

Note that neither f� nor g� are regular fragments� but they can be de�ned as a collection

of regular fragments� therefore f� and g� need to be represented as a collection of regular

fragments� There may be more than one way to represent the fragments f� and g� as a

collection of regular fragments� These alternatives are compared and one that minimizes

the total number of disk I�O�s to access the fragments f� and g� is selected�

The various alternatives for generating the non�overlapping mixed fragments from the

overlapping mixed fragments are now described� As shown in the Figure �� for two

overlapping fragments f and g without any loss of generality� f can be written as� f 	

�The operator � is used as a common notation for Concatenation and Union operations so as not to

�



-

fg

g g

g g

g g g

g- - -

- -

- -

t

b

rsls

brcblc

tlc trc

Contained-in fragments

f

g

r

f f

f g

g g

- -

- -

- -

s

c t

b c

s

Overlapping Fragments

Figure ��� Overlapping and Contained�in Fragments

r� f�s � f�t � f�c and g � r� g�s � g�
b
� g�c � where f�s and g�s are the sets of grid cells to

the sides of the regular fragment r� and f�
t

and g�
b
are the set of grid cells which are either

above or below the regular fragment	 And g�c and f�c are grid cells in the corner	 Note that

all of the above sets of grid fragments are regular and more over� g�s
S

g�c is regular� g�c kg
�

b

is regular� so is f�
s

S
f�
c
� and f�

t
kf�

c
	

In order to generate non�overlapping fragmentation schemes� the following alternatives

for fragments f and g need to be considered	

Eval Overlapping��

�	 ff�s � f�
t
� f�c g vs ff�s � f�

t
kf�c g vs ff�

t
� f�s

S
f�c g	


	 fg�
s
� g�

b
� g�

c
g vs fg�

s
� g�

c
kg�

b
g vs fg�

b
� g�

s

S
g�
c
g	

The alternatives� one each from ��� and �
� which give rise to least number of disk io�s

as described in section �	�	� are chosen	 Each alternative rede�nes the fragment f� or

complicate the expression� It is clear from the expression and Figure �� as to when � means concatenation

and when it means union�

��



g� as a set of non�overlapping regular fragments� The regular fragments ff�s � f�t � f�c g can

be generated by comparing the representation scheme of fragment r with representation

schemes of fragments f and g� The grid cells in f�t is de�ned by taking the grid cells in f

with horizontal fragments not in r but vertical fragments in r� Similarly� the grid in f�s are

de�ned by taking grid cells from f such that the horizontal fragments are the same as that

of r� but vertical fragments are not those from r� And the grid cells in f�c are those from f

such that none belong to either vertical or horizontal fragments from r� In a similar manner

the grid cells in g�s � g
�

b � and g�c are de�ned� Note that in the above set of alternatives some

of the elements like f�s may be empty sets�

b2

2 a1a

b1

a1
a2 3a

1b

1c

b2

2 c

b3

c3

2 b 3b

c2 3c

4b

4c

4d3d2d

1b

a1

2 b

c2c1

a3

g f

gf

Overlapping Grid Cells

Contained-in Grid Cells.

3b

3c

a2

Figure ��� Example of overlapping and contained�in mixed fragments

With respect to example in Figure ��� for the overlapping mixed fragments f and g�

r 	 f
�b�c�� ��b�c�g� f
�

t 	 f
a� �ag�f
�

c 	 f�ag� g
�

b 	 f
d� �dg� g
�

c 	 f�dg� f
�

s 	 f��b�c�g� and

g�s 	 f��b�c�g�

�



����� The case of contained in fragments

Let f and g be two fragments such that f
T

g � f � In this case fragment g can be written

as� �see Figure ��� g � �f 	 g�t 	 g�b 	 g�ls 	 g�rs	 g�blc	 g�brc 	 g�tlc	 g�trc�
� where g� � g� f �

Note that the grid cells belonging to regular fragments g�tlc� g
�

t � etc�� are de
ned by ordering

the horizontal fragments so that there are some above the horizontal fragments de
ning f �

and some below� and vertical fragments to the left and right of those in f � Then using a

similar reasoning as in the case of overlapping fragments� these regular fragments covering

fragment f can be de
ned� For example� the regular fragment g�trc is de
ned by the grid

cells generated by intersecting the set of horizontal fragments above those in f and a set of

vertical fragments to the right of those in f � In order to generate non�overlapping fragments

the following alternatives need to be considered� Note that g� is not a regular fragment�

�� fg�rs
S

g�trc
S

g�brc� g
�

ls

S
g�tlc

S
g�blc� g

�

t � g�b g

�� fg�rs
S

g�trc
S

g�brc� g
�

ls

S
g�tlc� g

�

blc� g
�

t � g�b g vs fg�rs
S

g�trc
S

g�brc� g
�

ls

S
g�tlc� g

�

blckg
�

b � g�t g vs

fg�rs
S

g�trc
S

g�brc� g
�

ls

S
g�blc� g

�

tlc� g
�

t � g�b g vs fg�rs
S

g�trc
S

g�brc� g
�

ls

S
g�blc� g

�

tlckg
�

t � g�b g�

� fg�ls
S

g�tlc
S

g�blc� g
�

rs

S
g�trc� g

�

brc� g
�

t � g�b g vs fg�ls
S

g�tlc
S

g�blc� g
�

rs

S
g�trc� g

�

brckg
�

b � g�t g vs

fg�ls
S

g�tlc
S

g�blc� g
�

rs

S
g�brc� g

�

trc� g
�

t � g�b g vs fg�ls
S

g�tlc
S

g�blc� g
�

rs

S
g�brc� g

�

trckg
�

t � g�b g�

Among all of the above choices the representation that has the least number of disk

i�o�s is chosen as described in section ����� Note that some of the fragments like g�trc� g
�

t �

g�ls � g
�

rs� g
�

trc� g
�

tlc� g
�

blc� g
�

brc may be empty� thus reducing the number of alternatives�

With respect to example in Figure ��� r � f��a�b�� ��a�b�g� g
�

t � g�ls � g�blc � g�tlc � g�trc �

�� g�b � f�c� �cg� g
�

brc � fcg and g�rs � f�a�b�g�

In this section an algorithm to generate the overlapping mixed fragments by merging

the grid cells is presented� Two ways of decomposing the overlapping mixed fragments to

non�overlapping mixed fragments are described� These algorithms are used to merge the

sets of grid cells based on the transaction semantics and number of disk accesses required

to process the transactions�

�The subscripts t and b mean top and bottom� rs and ls mean right and left side respectively and blc� brc�

tlc� trc represent the fragments at four corners of f � for e�g� top�left�corner� etc��

��



Grid Optimization��

�� Merging Possibilities��

�� Sort the candidate mixed fragments in M in the descending order of the number of

grid cells forming the mixed fragment�

�a� Get the �rst mixed fragment f in M which has some other mixed fragment g�

such that g is contained in f �

i� Eval Contained in��

�b� Else get the �rst mixed fragment f in M which has some other mixed fragment

g� such that f and g are overlapping�

i� Eval Overlapping��

�c� If there are none which are overlapping or contained�in� then exit else go to step

��

Claim � The algorithm Grid Optimization�� generates the non�overlapping mixed frag�

mentation�

Justi�cation� In the �rst step the routine Merging Possibilities�� is called to generate a

set of merging possibilities to form mixed fragments� But as elaborated earlier the merging

possibilities may generate an overlapping fragmentation scheme� Therefore� the mixed

fragments in the merging candidates are sorted in descending order of the number of grid

cells forming the mixed fragment� This is because the larger the mixed fragment� the

greater the probability that it is overlapping with some other mixed fragment� or some

other mixed fragment is contained in this fragment� The ordered list is searched until two

mixed fragments that are overlapping or contained are found� The contained�in case is �rst

considered so as to rede�ne the larger mixed fragment for processing all the transactions

e	ciently� In case of the overlapping fragments only some grid cells are common to both

the fragments and rede�nition of the fragments generates fewer new fragments than the

contained�in case� Here the large fragments that have some grid cells in common with other

fragments are rede�ned so as to generate as many non�overlapping mixed fragments as

possible� After the two contained�in or overlapping fragments are considered and the non�

overlapping mixed fragments are generated all the candidate mixed fragments �including the

newly generated ones� are again sorted� Note that in this step the non�overlapping fragments


�



are generated by selecting the alternative that requires the least number of disk I�O accesses

to process all the transactions� This process of �nding a pair of contained�in or overlapping

fragments and rede�ning is iteratively continued till non�overlapping fragmentation scheme

is generated� This set of �nal candidate mixed fragments gives us the mixed fragmentation

scheme for the relation�

Therefore� the algorithm Grid Optimization�� generates a non�overlapping mixed frag�

mentation scheme� As the algorithm is a greedy� its optimality cannot be guaranteed� �

��� Summary

In this chapter a representation scheme for the mixed fragments was presented� A cost

model on which our merging algorithms are based is presented� An algorithm that gener�

ates an overlapping mixed fragmentation scheme was proposed� In order to generate non�

overlapping mixed fragments� the cases of overlapping mixed fragments namely� contained�in

and overlapping fragments are considered� The algorithms to rede�ne the overlapping or

contained�in fragments as non�overlapping mixed fragments are developed� Finally� an al�

gorithm that generates the non�overlapping mixed fragmentation scheme is presented� The

major feature of this methodology was that it incorporates horizontal and vertical frag�

mentation simultaneously based on the same algorithm and supports the investigation of

the e�ects of the di�erent sequences of partitioning� The top�down philosophy was used

for generating grid cells corresponding to clusters of predicates and attributes accessed by

transactions together� Then the �bottom�up	 evaluation was done by considering a re�

duction in cost by merging the already created cells vertically or horizontally� This is the

�rst comprehensive treatment for generating a mixed fragmentation scheme in distributed

database design�


�



CHAPTER �

MATERIALIZATION OF DISTRIBUTED DATABASES

��� General Comments

This chapter presents a methodology to materialize a new design of a populated distributed

database from its existing current design� It is assumed that both vertical and horizontal

partitioning are simultaneously applied to generate a set of grid cells of the relation� A rep�

resentation scheme developed in the last chapter for de�ning the fragments as a well formed

expression over the grid cells will be used in developing the materialization algorithms� Two

approaches shall be presented to materialize the distributed databases namely� the query

generator approach and the operator approach� For both the approaches the algorithms are

presented and their correctness is proved� In developing these algorithms to materialize the

distributed database� the case where the grid cells do not change is considered �rst� That

is� there is no change in the vertical and horizontal fragmentation schemes between the

current design and the new design� After that the solution is extended to the case where

there is a change in the grid cells� A cost model was developed to evaluate the cost of ma�

terializing the distributed database� This model was used to compare the two approaches

to materialize the distributed database�

��� Two approaches to materialize a new design

The distributed database design �F�A� consists of a fragmentation �F � and an allocation

�A� scheme� The total redesign generates a new fragmentation and allocation scheme from

the current design represented by �F �� A��� The objective is to develop a methodology and

a set of algorithms to materialize �F �� A�� from �F�A� for a populated distributed database�

The following two approaches have been developed�

Query Generator In this approach each of the fragments in the new fragmentation scheme

is expressed as a query on the distributed database so as to let the distributed database

system materialize the new fragmentation scheme� This approach depends on the

	




ability to generate correct queries for de�ning each of the fragments� The distributed

database system undertakes the task of materialization of the new design� The mod�

ule which generates the above set of statements is known as the query generator�

Developing a query generator and proving its correctness is a complicated problem�

An algorithm for query generation is presented in Section ������

Operator Method The motivation for this approach is that the query generator method

depends on the processing capability of the distributed database system and it may be�

come unwieldy and out of control to give optimal performance� The operator method

consists of de�ning a set of primitive operations which can be performed on the frag�

ments� The operations are �split�� �move�� �replicate�� �remove� and �merge�� This

method was utilized in limited redesign by Wilson and Navathe �WN	
�� The oper�

ation split is used to split a fragment into two sub�fragments� The operations move�

replicate and remove are used to move a fragment from one site to another site� repli�

cate a given fragment at another site� and delete a fragment at some site respectively�

The operation merge is used to form a single fragment by merging two fragments�

The operator method generates a program with above mentioned operations which

when executed will materialize the new design� The complexity of these algorithms

depends on the complexity of the underlying split� merge and move operations� The

module supporting these operations is external to the distributed database system�

The algorithms to support these operations are subject to further analysis so that

they can be eciently implemented�

In case of the query generator method� the eciency of the method depends on the

eciency of the distributed database system and is typically beyond the control of

the distributed database administrator�

��� Representation of Distribution Designs

A formal de�nition of the fragmentation scheme and a few other concepts that will be

used in developing the algorithms to materialize the redesigned distributed databases are

presented �rst�

De�nition � Fragmentation scheme is a set of regular fragments over the set of grid

cells such that each grid cell belongs to at least one fragment�

��



De�nition � Non�overlapping fragmentation scheme is a fragmentation scheme such

that each of the grid cells belongs to exactly one fragment of the fragmentation scheme�

Consider the following example of the employee relation shown in Figure �� with vertical

fragments as�

EMPLOYEE

Emp# Name City Dept# Proj# Salary Bonus School Degree

1

2

3

4

5

6

7

8

9

Ian

Jim

Tom

Ann

Kate

John

Ram

Mary

Vijay

Atl

SF

LA

NY

NO

LDN

BOM

STL

DEL

10

11

2

3

21

22

13

33

33

123

124

231

231

123

145

165

213

213

20K

50K

30K

65K

33K

110K

68K

45K

40K

1K

2K

1K

5K

2K

8K

6K

3K

2K

GaTech BS

UnivFL MS

Duke BS

CalTech MS

UCB BS

GaTech Ph.D.

IIT M.Tech

NYU BS

GaTech BS

Figure ��� Relation Employee

�� fEmp�� Name � Cityg�

�� fEmp�� Dept�� Proj�g�

�� f Emp�� Salary� Bonusg�

	� fEmp�� School� Degreeg�

and horizontal fragments as�

a� f Dept� � ��g�

b� f �� � Dept� � 	�g�


�



c� f �� � Dept� � ��g�

d� f Dept� � �� g�

Figure �� illustrates the �	 grid cells generated by simultaneously applying the ver


tical fragmentation �which derives four vertical fragments �� �� � and � and horizontal

fragmentation �which derives four horizontal fragments a� b� c and d�

NYAnn

LATom

Emp# Name City

3

4

Emp# Name City

1 Ian Atl

2 Jim SF

7 Ram BOM

Emp# Dept# Proj#

231

231

2

3

3

4

Emp#

1

2

7

Dept# Proj#

10 123

11 124

13 165

Emp# Dept# Proj#

5

6

21

22

123

145

Emp# Name City

5

6

Kate

John

NO

LDN

Emp# Name City

8

9

Mary

Vijay

STL

DEL

Emp# Dept# Proj#

8

9

33

33

213

213

Emp# Salary Bonus

8

9

45k

40k 2k

3k

Emp# Salary Bonus

5

6

33k

110k

2k

8k

Emp# Salary Bonus

1

2

7

20k

50k

68k

1k

2k

6k

Emp# Salary Bonus

3

4

30k

65k

1k

5k

Emp# School Degree

3

4

Duke

CalTech

BS

MS

Emp# School Degree

1

2

7

GaTech

UnivFL

IIT M.Tech

BS

MS

DegreeSchool

Ph.D.

BS

GaTech

UCB

6

5

Emp#

School

BS
BS

GaTech
NYU

9

8

Emp# Degree

Figure ��� Grid Cells of the Relation Employee

Figure �� shows the result of the grid optimization phase on the grid cells in Figure

��� This results in four fragments DEPT PROJ � SAL SCHOOL�� SAL SCHOOL� and

SAL SCHOOL��

Figure �� shows the representation of the fragmentation scheme �F�A �illustrated in

Figure �� with four fragments f�� f�� f� and f�� For ease in development of general purpose

algorithms to materialize redesigned distributed database the fragment names instead of

speci�c table names will be used�

��



Degree

9

8

6

5 Kate

John

Mary

Vijay

NO

LDN

STL

DEL

21

22

33

33

123

145

213

213

7

4

3

2

1

Proj#Dept#CityNameEmp#

Ian

Jim

Tom

Ann

Ram

Atl

SF

LA

NY

BOM

10

11

2

3

13

123

124

231

231

165

DEP_PROJ

Degree

M.Tech

MS

BS

MS

BS

IIT

CalTech

Duke

UnivFL

GaTech

6k

5k

1k

2k

1k

68k

65k

30k

50k

20k

SchoolBonusSalary

7

4

3

2

1

Emp#

SAL_SCHOOL1

SchoolBonusSalary

BS

BS

GaTech

NYU

2k

3k

40k

45k

9

8

Emp#

SAL_SCHOOL2

DegreeSchoolBonusSalary

Ph.D.

BS

GaTech

UCB

8k

2k

110k

33k

6

5

Emp#

SAL_SCHOOL3

Figure ��� Current Design �F�A�

Table �� Representation of Current Design �F�A��

Fragment Name Table Name Representation Site

f� DEPT PROJ ���a�b�c�d�� ��a�b�c�d�� s�

f� SAL SCHOOL� �	�a�b�� 
�a�b�� s�

f� SAL SCHOOL� �	�c�� 
�c�� s�
f� SAL SCHOOL	 �	�d�� 
�d�� s�

Each grid cell belongs to exactly one horizontal and one vertical fragment and hence

each grid cell is bounded by columns in the vertical fragment and the predicate de�ning

�



)3s,4f(

)1s,( 3f

, )( 2
s

2f

3 4d d

a1 2a

1 2b b

21c c

1 2d d

bb

aa

43

3 4

cc3 4

, )( 1s1f

Figure ��� Current Fragmentation Scheme �F�A�

the horizontal fragment it belongs to� A fragment has been de�ned as the result of a

well formed expression over the set of grid cells� The attributes of a regular fragment are

columns �given by the union of the columns of all vertical fragments in the well formed

expression� of the fragment and the binding predicate �given by the disjunction of all the

predicates de�ning the horizontal fragments in the well formed expression� of the fragment�

All the tuples in the fragment satisfy the binding predicate� The system catalog of the

distributed database system needs to store and manage the meta data describing these

attributes or characteristics of a fragment� The system catalog also stores and maintains

the representation scheme along with the fragment names�

����� Intersection of fragmentation schemes

Let R be a relation	 with V 
 f�� �� � � � � ng as the set of vertical fragments	H 
 fa� b� � � � � xg

be the set of horizontal fragments and f�a� �b� � � � � �x� �a� �b� � � � � �x� � � � �na� nb� � � � � nxg be

the set of grid cells� Assume the current design �F�A� and the new design �F �� A�� for

the relation R is given� Then	 let F 
 ff�� f�� � � � � fng and F
�


 ff
�

�
� f

�

�
� � � � � f

�

mg be two

fragmentation schemes on R� As each fragment f
�

i
is a subfragment of R	 R covers� f

�

i
� It

may be possible to cover a fragment of f
�

by using a subset of the fragments of F �

�By covers� it means that each tuple of the fragment f
�

i is a tuple or part of a tuple of the relation R�

��



De�nition � The Minimal cover of a fragment f
�

i
of a fragmentation scheme F

�

is the

set of fragments of fragmentation scheme F which have non�empty intersection with f
�

i
�

That is� m�f
�

i
� � ffj j r�fj�

T
r�f

�

i � �� � where fj � Fg�

Thus the minimal cover of a fragment �f
�

� of the new fragmentation scheme �F �� consists

of the fragments �f� from the current fragmentation scheme �F � containing data to form it�

The theorem below guarantees that no spurious information is generated when materializing

the new design�

Theorem � No Spurious Information Generation There is no fragment in F � whose

minimal cover is empty�

Proof� Every grid cell of relation R belongs to some fragment fi of F and f
�

j of F
�

� there�

fore� r�fi�
T
r�f

�

j� �� �� Hence the minimal cover of any fragment of F
�

is not empty� �

EDPS

ESD2

ESD1

ESBEDP

165

231

231

124

123

13

3

2

11

10

BOM

NY

LA

SF

Atl

Ram

Ann

Tom

Jim

Ian

Emp# Name City Dept# Proj#

1

2

3

4

7 6k

5k

1k

2k

1k

68k

65k

30k

50k

20k

BonusSalary

7

4

3

2

1

Emp#

Ph.D.

BS

GaTech

UCB

6

5

M.Tech

MS

BS

MS

BS

IIT

CalTech

Duke

UnivFL

GaTech

DegreeSchool

7

4

3

2

1

Emp#

45k

40k

3k

2k

BonusSalary

8k

2k

110k

33k

9

8

6

5

Proj#Dept#CityNameEmp#

Kate

John

Mary

Vijay

NO

LDN

STL

DEL

21

22

33

33

123

145

213

213

DegreeSchool

BS

BS

GaTech

NYU

9

8

Emp#

Figure �	
 New Fragmentation Scheme �F �� A��

��



The intersection scheme of fragmentation schemes F and F
�

is de�ned as F
T
F

�

�

fm�f
�

�
�� m�f

�

�
�� � � � � m�f

�

m�g� Regular Fragment Intersection Closure theorem assures that

the set of fragments in F
T
F � are all regular fragments� and that the fragments in the

minimal cover are also regular fragments� The motivation for the intersection scheme is that

for forming any fragment f
�

of the fragmentation scheme F
�

� data from fragments m�f
�

� of

the fragmentation scheme F is needed� The cardinality of m�f �

i
� gives the number of sub�

fragments that need to be merged to form the fragment f �� This intersection scheme provides

an approach for generating the merge operations on the fragments of the fragmentation

scheme F � Also� it is proved that there is no fragment in fragmentation scheme F � whose

minimal cover is empty� This means that each of the fragments of the new fragmentation

scheme has a non�trivial minimal cover and that there is a mechanism to generate this

minimal cover�

4)s,5f’(

)3s,2( f’

)2s,4
( f’

3

dd 21

c1 2

d3

c c

d4

(f’1, s1)
bb 21

a21a

b

a

3

3

c

a

b4

4

4
3s3 ,f’( )

Figure 	
� Representation of Fragmentation Scheme �F �� A��

Figure 	
 gives the representation of new design �F �� A�� of Employee relation given in

Figure 
�� The minimal covers for the fragments of the fragmentation scheme F are given

in Table �

For example� from Table � to form the fragment f �

�
� data from the fragments f�� f� and

f� which are the elements of its minimal cover is needed�

��



Table �� Representation of New Design �F �� A���

Fragment Name Table Name Representation Site

f
�

� EDP ���a�b�� ��a�b�� s�

f
�

� EDPS ���c�d�� ��c�d�� ��c�d�� s�

f
�

� ESB ���a�b�� s�

f
�

� ESD� �	�a�b�c�� s�

f
�

� ESD� �	�d�� s�

Table �� Minimal Cover for Fragments in the New Design

New Fragment �f �� Elements �f� of Representation Minimal Cover Site
Minimal Cover r�f

T
f �� �From Current Allocation�

f
�

� f� ���a�b�� ��a�b�� s�

f
�

� f� ���c�d�� ��c�d�� s�
f� ��c� s�
f� ��d� s�

f
�

� f� ���a�b�� s�

f
�

� f� �	�a�b�� s�
f� �	c� s�

f
�

� f� �	d� s�

De�nition � An intersect of a fragment fi of fragmentation scheme F is de�ned as the

set of fragments of fragmentation scheme F
�

which intersect with the fragment fi� That is�

int�fi� 
 ff
�

j j r�fi�
T
r�f

�

j� �
 � where f
�

j � F
�

g�

Thus the intersect of a fragment �f� of the current fragmentation scheme �F � consists

of the fragments �f
�

� of the new fragmentation scheme �F �� that need data from it� The

theorem below guarantees that there is no loss of information when the new design is

materialized�

Theorem � No Loss of Information There is no fragment in F whose intersect is empty�

Proof� The proof is similar to that of theorem �� �

Intuitively� the above theorem says that every grid cell in the old design must occur

somewhere in the new design� Otherwise� some data is lost� The cardinality of the int�fi�

�



of a fragment fi gives the number of sub�fragments the fragment fi is split into� In the

above theorem it is proved that each fragment fi has a non�empty intersect� therefore each

fragment fi needs to contribute its data to form some fragment f �

j of fragmentation scheme

F �� Table � lists the intersect for each of the fragments of the fragmentation scheme F ��

Table �� Intersect for Fragments in the Current Design

Old Fragment �f� Elements �f �� of Representation Intersect Site
Intersect r�f

T
f �� �New Allocation�

f� f
�

� �	�a�b�� 
�a�b�� s�

f
�

� �	�c�d�� 
�c�d�� s�

f� f
�

� ���a�b�� s�

f
�

� ���a�b�� s�

f� f
�

� ���c�� s�

f
�

� ���c�� s�

f� f
�

� ���d�� s�

f
�

� ���d�� s�

For example� Table � illustrates that the intersect of fragment f� consists of fragments

f �

� and f �

�� The above theorems shall be used in developing the algorithms for materializing

the design using the operator method� Now the characteristics of a design are presented by

combining a fragmentation scheme with an allocation scheme�

Let S be the set of sites in the distributed database environment� An allocation scheme

A is a mapping between the set of fragments in the fragmentation scheme F and the set

of sites S� That is� A � F �� S� It is a many to many mapping� For each fragment fi�

let �i be the set of sites it is allocated to� If each of the �i�s is a singleton set� then the

allocation scheme is non�replicated� The design for a distributed database is now represented

as �F�A�  f�f�� ���� �f�� ���� � � � � �fn� �n�g� The allocation scheme can be added to the

minimal cover and intersect of the fragment and denote them as m�f
�

i � �
�

i�  f�fj � �j� j

fj
T
f

�

i � � where fj � Fg and int�fi� �i�  f�f
�

j � �
�

j� j fi
T
f

�

j � � where f
�

j � F
�

g�

��� Approaches for Materialization

In this section by employing the representation scheme developed in the previous section a

methodology for materialization of a new design for both our approaches the query generator

�	



and the operator method is developed� A query generator algorithm which generates a set of

SQL statements to materialize the new design from the current design is developed� In case

of the operator method� algorithms for splitting� reallocating and merging the fragments of

the current design to materialize the new design are presented�

The algorithms presented in this section will work for overlapping fragmentation schemes

and replicated allocation schemes�

����� Materialization of a redesigned distributed relational database by auto�

matic generation of SQL commands

As de�ned in the previous section a grid cell is represented by �� � where � is the vertical

fragment and � is the horizontal fragment the grid cell belongs to� Let c ��� be the set

of columns spanning the vertical fragment �� and p ��� be the binding predicate of the

horizontal fragment �� Then the SQL query to de�ne the grid cell is

SELECT c ��� FROM R WHERE p ���� � � ����

The concatenation of two horizontal grid cells is represented by ��� � �
�

��� the SQL state�

ment to represent the above well formed expression is

SELECT c ���
S
c ��

�

� FROM R WHERE p ���� � � ����

Note that for concatenation� forming the union of the column sets of the horizontal grid

cells ���� �
�

�� is valid�

The union of two vertical grid cells is represented by ���������� The union of two hor�

izontal fragments � and �
�

is de�ned as the disjunction of the binding predicates of the

horizontal fragments� The SQL statement which represents this well formed expression is

SELECT c ��� FROM R WHERE p ��� or� p ��
�

�� � � � �	�

The fragmentation scheme consists of a set of regular fragments for which� the queries

to materialize them need to be generated� Given a regular fragment f
�

belonging to the

fragmentation scheme F
�

� and its representation as f��A� ��A� � � � � �nAg� Then the SQL

statement representing the regular fragment is

SELECT
Sn
i�� fc ��i�g FROM R WHERE

W
a �Afp �a�g� � � ����

�Depending upon the predicates the or operator can be considered as a part of the SQL syntax� If the

two predicates can be combined to form a single predicate� then it is not part of the SQL syntax�

�	



where
W

denotes the disjunction operator� The above expression can be derived in a

straight�forward manner from the generalization of the basic statements given by ���� ���

and ����

Let �F�A� be the current design and �F
�

� A
�

� be the new design� Then the algorithm to

generate the queries to materialize the new design from the current design is given below

Query Generator ��F�A�� �F
�

� A
�

��

�� repeat for each s � S

�a� de�ne frg
�

�s� � ff
�

i
j s � �

�

i
	 �f �

i
� ��

i
� � F �g

�b� repeat for each f
�

� frg
�

�s�

i� let representation of f
�

be f��A� ��A� � � � � �nAg

ii� Generate SQL statement


�CREATE TABLE f
�

De�ne Columns ��
S
n

i��
fc ��i�g� �

iii� Generate SQL statement


�INSERT INTO f
� S

n

i��
fc ��i�g

SELECT
S
n

i��fc ��i�g

FROM R

WHERE
W
a�Afp �a�g �

�� repeat for each s � S

�a� de�ne frg�s� � ffi j s � �i 	 �fi� �i� � Fg

�b� repeat for each f � frg�s�

i� Generate SQL statement


�DROP TABLE f �

Claim � The algorithm Query Generator��materializes the redesigned distributed database�

Justi�cation� Each fragment in the new fragmentation scheme F � is materialized at some

site� The above algorithm generates the set of SQL statements that must be executed at

each of the sites of the distributed database environment� The SQL statements create a

fragment �Step ��b�ii of the above algorithm� of the new fragmentation scheme at its al�

located site �Step ��a� of the algorithm�� and insert the data into the fragment using the

�De�ne Columns�� de�nes the columns according to the syntax of the create DDL statement for the
underlying database management system�

��



�INSERT INTO TABLE table name SELECT � � � �� statement �Step ��b�iii� of the

algorithm�� The important statement in the above algorithm is the SELECT query in the

INSERT statement� The correctness of the above algorithm depends on the correctness of

the select statement� The statements ���� � � � � ��� prove that the above select statement

is correct� Hence the above algorithm generates the correct set of statements that need to

be executed at each of the sites to materialize the new fragmentation scheme� Note the

second repeat loop generates the set of �Drop table � � � �� statements to drop the current

fragmentation scheme� �

The algorithm Query Generator gives us the following set of SQL commands that need

to be executed at each of the sites where the fragments of the fragmentation scheme F
�

are

located� The set of SQL commands that need to be executed at site S� as given by the

Query Generator algorithm are listed below� The representation scheme names for frag�

ments are substituted by actual table names of the local databases by the Query Generator

algorithm�

Site S�

Fragments f
�

�
� f

�

�
are allocated to site s�� The set of SQL commands to be executed

at site s� are�

�� CREATE TABLE EDPS �

Emp� Integer	

Name Char��
�	

City Char����	

Dept� Integer	

Proj� Integer	

Salary Char��	

Bonus Char�� ��

�� CREATE TABLE ESB �

Emp� Integer	

Salary Char��	

Bonus Char�� ��

�� INSERT INTO EDPS�Emp�	 Name	 City	 Dept�	 Proj�	 Salary	 Bonus�

SELECT Emp�	 Name	 City	 Dept�	 Proj�	 Salary	 Bonus

�



FROM Employee

WHERE ��� � Dept� � ��� or �Dept� � ����

	
 INSERT INTO ESB�Emp�� Salary� Bonus�

SELECT Emp�� Salary� Bonus

FROM Employee

WHERE �Dept� � ��� or ��� � Dept� � ����

Similarly the Query Generator will specify appropriate SQL statements that need to be

executed at Sites S�� S� and S� to materialize fragments EDP � ESD� and ESD� respec

tively
 Now a set of commands to drop the fragments belonging to the fragmentation scheme

F need to be executed at each of the sites where they are located
 The set of commands

which are executed at site S� are�

�
 Site S�

Drop TABLE SAL SCHOOL��

Thus execution of the above set of SQL commands at their respective sites will materi

alize the new fragmentation scheme F
�

�

����� Materialization with operations on fragments

Let f be a regular fragment with its representation r�f� � f��A� ��A� ���� �nAg� where

��� ��� � � � � �n� are the set of vertical fragments and A consists of the set of horizontal

fragments� This representation is denoted as NA where N �
S
n

i��fc ��i�g� and c��i� is the

set of columns spanning the vertical fragment �i� The operations split and merge are de�ned

on this representation� whereas the operations move� replicate� and delete are independent

of the representation� The operation split generates two sub�fragments by splitting the

fragment either horizontally or vertically� This gives the following two variations of the

split operations�

split v �NA	 �N��A� �N��A� is the operation which denotes vertically splitting the fragment

represented by NA to generate new sub�fragments represented by N�A and N�A where

N � N�

S
N��

split h �NA	NA�
� NA�

� is the operation which denotes horizontally splitting the fragment

represented by NA to generate two sub�fragments represented by NA�
and NA�

where

p �A� � p �A��
W
p �A��� Note that A� and A� are horizontal fragments�


�



Merge is similarly de�ned as merging horizontally or vertically� vertical merging is equiv�

alent to forming a union of tuples� whereas horizontal merging is equivalent to concatenating

the sub�fragments� The merging operations are denoted as follows�

merge h �NA�
� NA�

�NA� meaning that the fragments represented by NA�
and NA�

are

merged horizontally to form the fragment NA where p �A� 	 p �A��
W
p �A���

merge v ��N��A� �N��A�NA� meaning that the fragments represented by N�A and N�A

are merged vertically to form the fragment NA where N 	 N�
S
N��

For example� fragment f� of the fragmentation scheme F shown in Figure 
� has its

representation as ���a�b�� �a�b��� so given the representation of fragment f � as �a�b�� the

operation split v�f�� f
�� f ��� splits the fragment f� into fragments f � �represented by �a�b��

and f �� �represented by ��a�b��� Similarly the operation merge v�f �� f ��� f��� merges fragments

f � and f �� to form the fragment f�� Note that for the split v operation� the number of tuples

in �N��A and �N��A are the same as that of NA� and vice versa for the merge v operation�

Similarly� the number of columns in NA�
and NA�

are the same as that of NA for the split h

operation� and vice versa for merge h operation�

The operations for reallocation are de�ned as follows�

move �f� s� s
�

� moves the fragment f from site s to site s��

replicate �f� s� materializes a copy of fragment f at site s�

remove �f� s� removes the fragment f at site s�

Given two designs �F�A� and �F
�

� A
�

�� the methodology to materialize �F �� A�� from

�F�A� can be illustrated as follows�

�F�A�� Divide � �F
T
F

�

� A�� Relocate � �F
T
F

�

� A
�

�� Conquer � �F
�

� A
�

��

That is� at each of the local sites the fragments of the current fragmentation scheme

are split into sub�fragments based on the intersection of the current fragmentation scheme

with the new fragmentation scheme �i�e� Divide�� Next� these sub�fragments are reallo�

cated by comparing the current and new allocation schemes �i�e Relocate�� Afterwards�

the sub�fragments at each of the local sites are merged to form the fragments of the new

fragmentation scheme �i�e� Conquer��

��



The sub frgs�f� consists of the sub�fragments into which the fragment f is split� that is�

sub frgs�f� � ff
T
f

�

j f
�

� int�f�g� The number of splits necessary to generate all the sub�

fragments of the fragment belonging to fragmentation scheme F is given by cardfint�f�g���

The split operations necessary to generate all the sub�fragments of the fragments depends

on the structure of sub frgs�f�� Note that by Regular Fragment Intersection Closure

theorem each of the sub�fragments are regular� Moreover� since the fragmentation schemes

are non�overlapping� each of the sub�fragments of the fragment f are disjoint�

In order to materialize a new design� fragments are split to their grid cells and clustered

according to their sub�fragment de	nitions� Then these clusters of sub�fragments are moved

according to the new allocation scheme� Note that a fragment consists of a cluster of grid

cells which are horizontally and
or vertically merged� This merging sequence is derived from

the well formed expression de	ning the fragment� Using the previously de	ned notation�

the grid cells ���� of each of the fragments �f� of the current fragmentation scheme �F � are

generated� and then these grid cells ���� are clustered according to the elements of the set

sub frgs�f�� These clusters are then reallocated according to the new allocation scheme

�A��� Once all the grid cells ���� for forming the new fragments are allocated according to

the new allocation scheme �A��� The fragments �f �� are formed by merging the grid cells

���� in their representation so as to materialize the new fragmentation scheme �F ���

In this case� the following intermediate operations are needed�

break �f� which splits the fragments into its grid cells� This operation is de	ned in terms

of the split v and split h operations�

cluster �f� which clusters the set of grid cells of the fragment f into one cluster�

locate �cluster�f�� �� which moves the cluster of grid cells forming the fragment f to set

of sites ��

form �f� which forms the fragment f from its grid cells by merging horizontally and
or

vertically� Note that this operation will use the operations merge h and merge v�

Figure ��� illustrates the hierarchy of the materialization operations� The opera�

tions split h� split v�merge h and merge v are primitive operations� The operations break�

relocate and form are built on these primitive operations� The eciency of the operations

��



Divide, Relocate, Conquer.

Break, Cluster, Locate , Form. .

Split_v, Split_h, Merge_v, Merge_h
Move, Replicate, Remove.

Materialization
Strategy
Operations

Intermediate
Operations

Primitive
Operations

Figure ��� A Hierarchy of Fragment Operations

break and form depends on the e�ciency of the split and merge operations� The opera�

tions Divide� Relocate and Conquer are the high level operations which are used by the

algorithm which materializes the redesign�

The whole process of materialization of the new fragmentation and allocation scheme

is done in three phases� namely� divide� relocate and conquer� The divide phase splits the

fragments into grid cells and clusters them according to elements of the set sub frgs�f	�

The relocate phase allocates these clusters according to the new allocation scheme� The

conquer phase forms the fragments of the new fragmentation based on the clusters of the

sub�fragments of the fragments of the new fragmentation scheme� Note that in the divide

phase the routines break and cluster are used� in the relocate phase the routine locate is

used� and in the conquer phase the routine form is used� Each of these phases is supported

by an algorithm� Hence� the materialization of the new fragmentation and allocation scheme

is equivalent to executing the following algorithms�

Divide�F�


� repeat for each site s � S

�a	 repeat for each f � F at s

��



i� break�f�

ii� generate sub frgs�f�

iii� repeat for each �f
T
f �� � sub frgs�f�

A� cluster� f
T
f ���

Relocate�F
T
F ��

�� repeat for each site s � S

�a� repeat for each f � F at s

i� repeat for each �f
T
f

�

� � sub frgs�f�

A� locate �cluster �f
T
f

�

�� s�f
�

����

Conquer�F
�

�

�� repeat for each site s � S
�

�a� repeat for each f
�

� F
�

at s

i� form�f
�

��

Claim � The algorithms Divide�F�� Relocate�F
T
F ��� and Conquer�F

�

� correctly materi�

alize the redesigned distributed database�

Justi�cation� The correctness of the materialization by the above three algorithms is

supported by the following points�

�� The Divide algorithm does the following�

� All fragments f belonging to fragmentation scheme F at a site are broken down

to the set of grid cells by using the function break� The break function uses the

split v and split h functions and is described in the Appendix A�

� These grid cells are then clustered according to the elements of the sets �f
T
f �� �

sub frgs�f�� Note that the elements of the set sub frgs�f� are de�ned by the

fragments f �
� F � that have non empty intersection with fragment f � Each

cluster �f
T
f �� is required to form the fragment f � of the new fragmentation

�s�f
�

� gives all the sites where the fragment f
�

is located according to the new allocation scheme A
�

�

	




scheme F �� Thus the routine Divide breaks the fragments f � F � and clusters

them to facilitate formation of the fragments f �
� F � at all sites where fragments

of fragmentation scheme F are allocated �Step ��a� of Divide routine��

�� The Relocate algorithm does the following�

� At each site where a fragment f � F is allocated� for each cluster of grid cells

�f
T
f �� � sub frgs�f�� if f � is not allocated at this site� then it locates the

cluster of grid cells �f
T
f �� at the site where f � is allocated�

� At the end of the previous step all the clusters of grid cells are located at sites

where the fragments f � that require data from these grid cells are allocated�

Moreover� as this routine is executed at all sites� all the grid cells required to

form the fragments f � get located at the site where f � is allocated �Step ��a� of

the Relocate routine��

	� The Conquer algorithm forms the fragments f �
� F � at each of the sites where they are

allocated by merging the grid cells� that de
ne the fragment� Note that the execution

of algorithms Divide� and Relocate before executing Conquer implies that the grid cells

are already materialized at the sites where they are needed to form the fragments of

the new fragmentation scheme� The routine form uses the operations merge h and

merge v and is described in Appendix A�

�� Thus the execution of the Divide� Relocate� and Conquer algorithms correctly mate�

rializes the distributed database� �

The operator method gives the distributed database designer more freedom to eciently

materialize the new fragmentation scheme� This is possible because the above set of opera�

tions are supported by the module which is not an integral part of the distributed database

system� Once these set of routines have been successfully executed� changes are made in

the system directory to represent the new fragmentation scheme� This can be done by exe�

cuting the SQL statements �CREATE TABLE � � � � � as mentioned in the query generator

method�

Once the divide and relocate routines are executed at each of the sites where the frag�

ments of the current design are located� the grid cells required to form the fragments of the

��



new design �i�e� corresponding to F �� will be located at the sites matching the new allo�

cation scheme A�� After this� the conquer algorithm is executed at each of the sites where

the fragments of the fragmentation scheme F � are allocated� Figures �� and 	
� show the

fragmentation schemes� their representation is shown in Figures �� and 	�� Table � shows

the intersect for each of the fragments of the fragmentation scheme F and Table  shows

the minimal cover for each of the fragments of the fragmentation scheme F
�

� With refer�

ence to the above set of �gures the divide� relocate and conquer algorithms will execute the

following set of routines� Note that the fragments named as �f�� f�� f�� f�� for fragmentation

scheme F and �f �

�
� f �

�
� f �

�
� f �

�
� f �

�
� for fragmentation scheme F � will be replaced by the corre�

sponding table names by the materialization of the redesign tool� The routines that need

to be executed are listed based on the sites at which the fragments of the fragmentation

scheme F are located�

Site S�

Old design� The fragments DEPT PROJ and SAL SCHOOL	 are located at site

s��

New design� EDP is allocated to site s��

�int�DEPT PROJ�� � fEDP�EDPSg�

�sub frgs�DEPT PROJ�� � fDEPT PROJ
T
EDP�DEPT PROJ

T
EDPSg�

�int�SAL SCHOOL	�� � fEDPS�ESD�g�

�sub frgs�SAL SCHOOL	�� � fSAL SCHOOL	
T
EDPS� SAL SCHOOL	

T
ESD�g�

However� DEPT PROJ
T
EDP �� �� Hence cluster�DEPT PROJ

T
EDP � and

locate�cluster�DEPT PROJ
T
EDP �� s�� are not listed in the routines which are

run�

�� break�DEPT PROJ��

	� break�SAL SCHOOL	��

� cluster�DEPT PROJ
T
EDPS��

�� locate�cluster�DEPT PROJ
T
EDPS�� s���

�� cluster�SAL SCHOOL	
T
EDPS��

�� cluster�SAL SCHOOL	
T
ESD���

�� locate�cluster�SAL SCHOOL	
T
EDPS�� s���

��



�� locate�cluster�SAL SCHOOL�
T
ESD��� s���

Site S�

Old design	 The fragment EMP SCHOOL� is located at site s��

New design	 ESD� is allocated to site s��

�int�EMP SCHOOL��� 
 fESB�ESD�g�

�sub frgs�EMP SCHOOL��� 
 fSAL SCHOOL�
T
ESB� SAL SCHOOL�

T
ESD�g�

However�EMP SCHOOL�
T
ESD� �
 �� Hence cluster�EMP SCHOOL�

T
ESD��

and locate�cluster�EMP SCHOOL�
T
ESD��� s�� are not listed in the routines which

are run�

�� break�EMP SCHOOL���

�� cluster�EMP SCHOOL�
T
ESB��

�� locate�cluster�EMP SCHOOL�
T
ESB�� s���

Site S�

Old design	 The fragment SAL SCHOOL� is located at site s��

New design	 EDPS is allocated to site s��

�int�SAL SCHOOL��� 
 fEDPS�ESD�g�

�sub frgs�SAL SCHOOL��� 
 fSAL SCHOOL�
T
EDPS� SAL SCHOOL�

T
ESD�g�

However� SAL SCHOOL�
T
EDPS �
 �� Hence cluster�SAL SCHOOL�

T
EDPS�

and locate�cluster�SAL SCHOOL�
T
EDPS�� s�� are not listed in the routines which

are run�

�� break�SAL SCHOOL���

�� cluster�SAL SCHOOL�
T
ESD���

�� locate�cluster�SAL SCHOOL�
T
ESD��� s���

Now the set of form routines to be executed at sites as speci�ed by the conquer algo

rithm are listed�

Site S�

New design	 Fragment EDP is located at site s�� Hence the following routine is

executed at this site�

��



�� form�EDP ��

Site S�

New fragment ESD� is located at site s�� Hence the following routine is executed at

this site�

�� form�ESD���

Site S�

New fragment EDPS and ESB are located at site s�� Hence the following routine is

executed at this site�

�� form�EDPS��

�� form�ESB��

Site S�

New fragment ESD� is located at site s�� Hence the following routine is executed at

this site�

�� form�ESD���

Once these set of routines are executed� the new fragmentation scheme will be materi�

alized� Though the routines to be run are listed according to the sites where the fragments

are located� it should be possible to run these set of routines by means of a remote pro�

cedure call� Now changes need to be made in the system directory to provide users and

applications access to the new design� The above example illustrates how the two methods

materialize the new design on the basis of the current design� This transfer from an existing

distribution of data to a new distribution of data can be done automatically�

��� Extension

In the last section algorithms that materialize the redesigned distributed databases using

either SQL statements or using operators on fragments had been developed� But the change

in the grid structure has not been taken into consideration� That is� now the redesign process

	




using the mixed fragmentation methodology generates a set of grid cells based on di�erent

vertical and horizontal fragmentation schemes�

Let �F�A� be the current design based on vertical fragments �� �� � � � � n and horizontal

fragments a� b� � � � � x and denoted as f�f�� ���� �f�� ���� � � � � �fp� �p�g�

Let �F
�

� A
�

� be the new design based on vertical fragments V
�

� ��
�

��
�

�� � � � m
�

� and

horizontal fragments H
�

� �a
�

� b
�

�� � � � y
�

� and denoted as f�f
�

�
� �

�

�
�� �f

�

�
� �

�

�
��� � � ��f

�

q��
�

q�g�

De�ne a set of virtual vertical fragments V �� � fc�v��� � c�k� � c�k
�

� j c�k�� c�k
�

� �� ��

where k � V and k
�

� V
�

g� and a set of virtual horizontal fragments H �� � fp�h��� �

p�u�
V
p�u

�

� j p�u�
V
p�u

�

� is non	contradictory� � where u � H and u
�

� H
�

g

Let G be the set of grid cells formed by vertical fragmentation scheme �V� and horizontal

fragmentation scheme �H�� G
�

be the set of grid cells formed by vertical fragmentation

scheme �V
�

� and horizontal fragmentation scheme �H
�

� and G�� be the set of virtual grid

cells generated by the virtual vertical fragmentation scheme �V ��� and virtual horizontal

fragmentation scheme �H ���� The grid cells G are mapped to grid cells G�� and the grid

cells G� are mapped to grid cells G��� so that the fragmentation schemes F and F
�

are now

de�ned based on the common set of virtual grid cells G��� Then the algorithms presented in

the last section can be applied to materialize new design �F
�

� A
�

� from the current design

�F�A� as both the fragmentation schemes are de�ned on the same set of virtual grid cells�

Theorem � Mapping of grid cells� Any grid cell �� � G can be mapped to a mixed

fragment f �� de�ned on grid cells G���

Proof� Consider the grid cell ��� i�e�� � is the vertical fragment in f�� �� � � � � ng� and � is

the horizontal fragment in fa� b� � � � � xg�

The grid cell �� shall be mapped to the virtual grid cells de�ned by G���

Let 
 � fv�� j c���� c�v��� �� � where v�� � V �� g�

Let � � fh�� j p���� p�h��� is non	contradictory where h�� � H �� g�

Because of the way in which V �� and H �� are de�ned� c���� c�v��� � c�v��� for all v�� � 


and p���
V
p�h��� � p�h��� for all h�� � �� This implies that the set of vertical fragments 


and horizontal fragments � generate complete and non	overlapping vertical and horizontal

fragments of � and � respectively�

�Non�contradictory means that conjunction of the two predicates p�u� and p�u
�

� makes sense� unlike
conjunction of predicates� say� �SAL � ��k� and �SAL � ��K� which is contradictory because it does not
make sense as there will be no tuple that satis	es both the predicates


�



Moreover�
S
v����

c�v��� � �� and
W
h����

p�h��� � ��

Thus� the set of grid cells formed by vertical fragments in � and horizontal fragments in

� that completely de	ne grid cell �� belonging to G� The mixed fragment formed by the

grid cells generated by � and � represents the grid cell �� belonging to G�

Hence any grid cell in G can be represented by a mixed fragment f �� formed by grid

cells in G�� whose representation is r�f ��� � fv��h�� j v�� � �� h�� � �g� �

By the above theorem� there is a mapping from each of the grid cells in G andG� to mixed

fragments de	ned on grid cells in G��� Similarly� the fragments in fragmentation scheme F

can be mapped to mixed fragments on grid cells in G�� and fragments in fragmentation

scheme F � to mixed fragments on grid cells in G���

Therefore� the fragments in fragmentation schemes F and F � are de	ned on a common

set of grid cells G��
 hence the materialization algorithms developed in last section can be

used for materializing the redesigned distributed databases�

Taking the change of grid cells into consideration will incur additional cost as the virtual

vertical and horizontal fragments need to be generated� thus creating a common represen�

tation to the fragmentation schemes� before the materialization algorithms developed in

Section � can be applied�

��� Cost Model

In this section a cost model for materializing a redesigned distributed database is developed�

This cost model will be based on the amount of time taken to materialize the new redesigned

distributed database� Since the size of the distributed database is going to be large� only

the time spent on data access and communication delay incurred to materialize the new

design will be considered while developing the cost model� Both these costs are based on

the size of the fragments of the distribution design�

The fragmentation scheme is based on the mixed fragmentation approach� Therefore�

an algorithm to calculate the size of the mixed fragments given the sizes of the vertical and

horizontal fragments can be presented�

Let f� �� �� � � � � ng be the set of vertical fragments of a relation R� Let K be the key of

the relation� Let l��� l���� � � � � l�n� be the lengths of the vertical fragments excluding the

length of the key and l�K� be the length of the key� Let fa� b� � � � � xg be the set of horizontal

��



fragments of the relation� Let ft�a�� t�b�� � � � � t�x�g be the number of tuples in each of the

horizontal fragments respectively�

Then the size of a regular mixed fragment can be calculated iteratively as follows�

�� The size of the grid cell represented by �� is v���� � fl��� � l�K�g� t����

	� The size of the fragment represented by �� � ��� is v��� � ���� � fl��� � l�K�g �

ft��� � t�����g�


� The size of the fragment represented by ��k�
�

� is v���k�
�

�� � fl���� l����� l�K�g�

t����

�� The size of a regular mixed fragment f with its representation r�f� as ���A� ��A� � � � � �pA
�

is v�f� � f
Pi�p

i���l��i� � l�K��g� f
P

��A�t����g�

The above set of iterative rules provide us with an algorithm to calculate the size of

each of the fragments of fragmentation schemes F and F �� Similarly� the sizes of the sub

fragments of fragment based on intersect and cover operations can be calculated� The sizes

of fragments and its subfragments enable us to calculate the time taken to materialize a

new redesigned distributed database�

Given �F�A� and �F �� A�� as the current and new redesigned distribution designs� Let

f � F be a fragment that is needed by fragments f
�

� int�f�� This requires fragment f to

be split into card�int�f�� subfragments� The cost of doing this is�

fd
v�f�

pagesize
e �

X

f
�

�int�f�

d
v�f � f

�

�

pagesize
eg � fDataAccessTimeg �	�

where pagesize is the size of the page in bytes holding the tuples of the relation� DataAc�

cessTime is the time taken on average to retrieve page of data from the stable storage to

the main memory� The above cost formula gives the time taken to divide a fragment f � F

to its subfragments based on fragmentation scheme F �� Each page that is read into the

main memory is split into the vertical fragments de�ned by intersecting subfragments and

placed in the pages corresponding to horizontal fragments of the intersecting subfragments

int�f��

A fragment f
�

� F � that needs data from fragments f � m�f
�

� �i�e� minimal cover��

requires f
�

to be merged from card�m�f
�

�� subfragments� The cost of doing this is�

��



fd
v�f

�

�

pagesize
e�
X

f�m�f
�

�

d
v�f � f

�

�

pagesize
eg �DataAccessTime ���

The above formula gives us the cost of merging the sub�fragments of the new fragment f �

based on the initial fragmentation scheme F � It is assumed that the sub�fragments are stored

as temporary tables in the site where f
�

is to be located� This a valid assumption because

these sub�fragments are mostly transferred from other sites of the distributed database

environment�

The cost of moving the sub�fragments according to the new allocation scheme is given

by�

X

f�m�f ���s�f���s�f ��

v�f � f
�

�

DataTransferRate
� ���

where the DataTransferRate is the number of bytes that can be transferred on an average

from one site to another in the distributed database environment� Only those sub�fragments

of a fragment f needed at other sites are transferred�

Finally	 the cost of materializing the redesigned distributed database de
ned by �F �� A��

based on the current design �F�A� by using the operator method is given by�

Co � f
X

f�F

fd
v�fi�

pagesize
e�

X

f
�

�int�f�

d
v�fi � f

�

�

pagesize
eg

�
X

f
�

�F �

fd
v�f

�

j�

pagesize
e�
X

f�m�f
�

�

d
v�f � f

�

j�

pagesize
egg � fDataAccessTimeg

�
X

f
�

�F ��f�m�f
�

��s�f� ��s�f
�

�

f
v�f � f

�

�

DataTransferRate
g ���

The 
rst part of the equation gives the cost of the Divide phase	 the second part gives

the cost of the Conquer phase and the last part gives the cost of the Relocate phase�

These cost functions have been generalized from the equations 	 � and �� Given the length

of the tuple of each vertical fragment	 the cardinality of each horizontal fragment	 the data

access time and the data transfer rate	 equation � gives the cost of materializing the design

�F �� A�� using the operator method�

In case of the query generator approach	 a set of SQL queries are executed at each of

the sites of the distributed database environment� The set of SQL statements basically

��



perform the operations of Divide and Conquer� Although� it is not obvious from evaluating

the SQL statements at each site� when all the SQL statements generated by query generator

accessing a fragment of a given fragmentation scheme are considered together it becomes

fairly obvious that the set of SQL statements perform both Divide and Conquer operations�

The distributed query processor of the distributed database system does not have the

capability of processing a set of SQL statements� Hence it evaluates and processes each of

the SQL statements to its completion� Thus a set of SQL statements that divide a fragment

f into its sub�fragments int�f� would require a complete scan of the fragment f for each of

the sub�fragments generated� But when merging the sub�fragments to form a new fragment�

the sub�fragments �which already exist either as temporary tables or relations� are loaded

into the main memory and the operations union or join are performed� Thus the cost of

merging the sub�fragments to form a new fragment is exactly the same as that for the

operator method� The sub�fragments of a fragment f are are located at sites where they

are needed to form the new fragments� Again the cost of doing this will be the same as

that for the operator method� Therefore the cost of materializing the redesigned distributed

database by query generator method is given by�

Cq � f
X

f�F

X

f
�
�int�f�

fd
v�fi�

pagesize
e 	 d

v�fi � f
�

�

pagesize
eg

	
X

f
�
�F �

fd
v�f

�

j�

pagesize
e	
X

f�m�f ��

d
v�f � f

�

j�

pagesize
egg � fDataAccessTimeg

	
X

f
�
�F ��f�m�f ���s�f� ��s�f ��

f
v�f � f

�

�

DataTransferRate
g �
�

Note that the query generator method incurs the cost of scanning the entire fragment to

generate each of its sub�fragments� Here it is assumed that there are no indexes that can be

used to reduce the number of pages that need to be accessed� Even if for one sub�fragment

generation an index cannot be used� the cost of materialization for the query generator

method will be larger than the operator method� But in the case of the operator method

the complete fragment is scanned only once to generate all its sub�fragments� whereas the

query generator method may require multiple scans of a fragment to generate all its sub�

fragments� The only case when the costs are the same is when there is only limited redesign�

It is also not practical to have indexes to bene�t the generation of the sub�fragments because

of lack of disk space� and also index generation is a costly and time consuming job�

�



Therefore� the operator method will perform better than query generator method almost

always�

��� Summary

Two automated approaches �Query Generator method and Operator method� to materi�

alize the new designs were described� The algorithms were presented and their correctness

proved for both the methods� By means of an example we illustrated how the material�

ization procedure is automatically done by both approaches� The query generator method

depends on the distributed database system�s processing capabilities for e�ciently mate�

rializing the new designs� Thus the e�ciency of materialization in this approach depends

on the global query optimization� decomposition and execution� In case of small sized dis�

tributed databases �possibly up to 	
�s of gigabytes in size� in a LAN environment� the

query generator method will be useful� But� in case of large databases with hundreds of

gigabytes of data� the distributed database system may not be able to handle the volume

of data transferred�

On the other hand� the operator method is independent of the distributed database

system functionality� The operator method is more suitable for large distributed databases

in a WAN environment� The major advantage of the operator method is that it can initiate

the routines divide� relocate and conquer in background with minimum interaction from

the distributed database system� Moreover� the operations split� merge and move can be

implemented so as to be e�cient� it is this control which is lacking in the query generator

method �which is very system dependent�� It is this �exibility in implementation of the

primitive operations that makes the operator method more general and powerful than the

query generator method�

The materialization methodology was extended to take into consideration the change

in grid structure during the redesign process� This extension is done by de�ning both the

current and new design by means of a common set of virtual grid cells� This enables us

to use the materialization algorithms that were developed for the case when there is no

change in grid structure� A cost model based on the sizes of the horizontal and vertical grid

fragments is developed to estimate the time taken to materialize the distributed database

by using both methods� It was shown that the query generator approach is in general more

costly than the operator approach�

�



CHAPTER �

EFFICIENT MATERIALIZATION BY USING THE QUERY

GENERATOR APPROACH

��� General Comments

In the last chapter two methods to materialize the redesigned distributed databases were

presented� The cost model was developed� which showed that the operator approach is more

e�cient than query generator approach� if for accessing at least one fragment no index could

be used� In this chapter a multiple query optimization technique will be used to enhance

the e�ciency of the query generator approach to materialize the redesigned distributed

databases�

��� Multiple Query Optimization

The query generator approach to materialize the redesigned distributed database initiates

a set of SQL statements at various sites of the distributed database environment� Since all

these SQL statements are going to executed simultaneously� there is a scope for optimizing

them� Moreover� the fragments and grid cells that need to be accessed by these SQL

statements are known in advance� The SQL statements to materialize the fragments of the

new distributed database design are all sent to a coordinator site� This coordinator site uses

the multiple query optimization technique �as described below�� to generate a set of SQL

statements each of which need to be executed at various sites of the distributed database

environment� This process of enhancing the e�ciency of the query generator approach using

the multiple query optimization is described by means of the following steps�

�� Each SQL statement is rewritten to specify which fragments of the current distributed

database design are accessed�

	� After this each SQL statement is parsed and a query graph is generated�


�



�� This query graph is modi�ed and extended by adding get and combine operations� The

leaf nodes of the query graph are the fragments of the current distributed database

design� The root nodes are the fragments of the new distributed database design�

�� These enhanced query graphs are merged into one query graph by merging the com�

mon leaf nodes� This merged query graph contains as its leaf nodes all the fragments

of current distributed database design� and as the root nodes the fragments of the

new distributed database design�

�� Finally� an SQL statement is generated for each leaf node and each root node� There

are some commands for transferring the data from one site to another according to

the new allocation scheme�

An example will be presented to illustrate these operations� After this a set of algorithms

will be described for this approach�

��� Example Illustrating use of MQO

Consider the Employee relation given in Figure �	� There are two distributed database

designs generated� Figures �
 and �� illustrate the current design F�A� and F �� A�� re�

spectively� The objective is to use the MQO technique in materializing design F �� A�� from

the design F�A� using the query generator algorithm�

Following are the set of SQL statements initiated to materialize the new design�

At site s��

INSERT INTO EDP Emp�� Name� City� Dept�� Proj�

SELECT Emp�� Name� City� Dept�� Proj�

FROM Employee

WHERE Dept� � �� AND �� � Dept� � ���

At site s��

INSERT INTO EDPS Emp�� Name� City� Proj�� Dept�� Salary� Bonus

SELECT Emp�� Name� City� Proj�� Dept�� Salary� Bonus

FROM Employee

WHERE Dept� � �� AND �� � Dept� � ���


�



At site s��

INSERT INTO ESB Emp�� Salary� Bonus

SELECT Emp�� Salary� Bonus

FROM Employee

WHERE Dept� � �� AND �� � Dept� � ���

At site s��

INSERT INTO ESD� Emp�� School� Degree

SELECT Emp�� School� Degree

FROM Employee

WHERE Dept� � �� AND �� � Dept� � �� AND �� � Dept� � 	��

At site s��

INSERT INTO ESD� Emp�� School� Degree

SELECT Emp�� School� Degree

FROM Employee

WHERE Dept� � 	��

The above set of SQL statements can be rewritten by taking into consideration the sites

at which the new fragments need to be materialized and the minimal covers for each of the

new fragments given in Table 	
 Note that the relation being speci�ed is no longer Employee

for all the SELECT statements� but the relations in the respective minimal covers
 For

example� for materializing the relation EDP in the new design� the relation to be accessed

is DEPT PROJ


��
 inserts� EDP

SELECT Emp�� Name� City� Dept�� Proj�

FROM DEPT PROJs�

WHERE Dept� � �� AND �� � Dept� � ���

��
 inserts� EDPS

SELECT Emp�� Name� City� Proj�� Dept�� Salary� Bonus

FROM DEPT PROJs�� SAL SCHOOL�s�� SAL SCHOOL	s�

WHERE Dept� � 	� AND �� � Dept� � 	��

	�
 inserts� ESB

��



SELECT Emp�� Salary� Bonus

FROM SAL SCHOOL��s�

WHERE Dept� � �� AND �� � Dept� � ���

	
� insert�s� ESD�

SELECT Emp�� School� Degree

FROM SAL SCHOOL��s��SAL SCHOOL��s�

WHERE Dept� � �� AND �� � Dept� � �� AND �� � Dept� � ���


� insert�s� ESD�

SELECT Emp�� School� Degree

FROM SAL SCHOOL��s�

WHERE Dept� � ���

Note that �insert�s� EDP� describes the operation of inserting tuples into the relation

EDP at site s�� Instead of referring to the EMPLOYEE relation in the FROM clause� the

set of relations in the minimal cover of the fragments in the new scheme are referred� This

immediately restricts the access to those relations which have at least one tuple to form the

new fragments�

In the next optimization step the columns and predicates speci�ed in the SELECT

statements are replaced by the representation of the corresponding vertical and horizontal

fragments� The FROM clause of an SQL statement is replaced by the combine function�

the SELECT and WHERE clauses are replaced by the get function� The function combine

merges a set of grid cells to form a mixed fragment� The function get retrieves a set of grid

cells from a mixed fragment� In fact� the functions combine and get are used to describe the

processing done to materialize a fragment by using an intermediate representation� Later

the speci�cation of the materialization process in this representation is translated back to

a set of SQL statements�

�
� insert�s� EDP

combine����a�b�� ��a�b�



get����a�b�� ��a�b�



from DEPT PROJ�s�

��



��� insert�s� EDPS

combine����c�d�� ��c�d�� ��c�d���

get����c�d�� ��c�d�� ��c�d���

from DEPT PROJ�s� � SAL SCHOOL��s�� SAL SCHOOL��s�

��� insert�s� ESB

combine����a�b���

get����a�b��

from SAL SCHOOL��s�

	�� insert�s� ESD�

combine��	�a�b�c���

get��	�a�b�c���

from SAL SCHOOL��s��SAL SCHOOL��s�


�� insert�s� ESD�

combine��	�d���

get��	�d���

from SAL SCHOOL��s�

The above set of modi�ed SQL statements describe the functions that need to be per�

formed to materialize the fragments of the new distributed database design� The represen�

tation of the fragments are used as the parameters of the functions get and combine� The

function get retrieves a set of grid cells from the relation� The function combine merges

a set of grid cells to form a new fragment� Figure �� shows the 
 modi�ed query graphs

corresponding to the above 
 modi�ed query statements� Note that all the fragments being

retrieved are regular fragments�

In the above representation of the SQL queries generated� a new fragment �for example

EDPS� is formed by combining data from more than one relation� In order to get the

relevant data from each of these relations� the get operation must be propagated to these

relations� The query graphs after this modi�cation are shown in Figure �	� Only those

query graphs which access data from more than one relation are showed� For the query

graphs that access data from only one relation there is no change�

	



3 5
4

2

1

( 4 (a , b,c )

)
)c,b,a(

4(

insert@s 2 ESD1

combine )

get

SAL_SCHOOL2SAL_SCHOOL1

b,a(

)d,c((c, d))d,c( ))3,,21((

(c,d ) )d,c( (c,d )(( 1 2, , 3 ) )

b,a(
)3(

(a , b
3( (( 4d )

)d4(

(( 1( a ,b ) 2 ( a , b ), )

), )2)b,a(1((

)combine

get

DEPT_PROJ

insert@s
1

EDP

DEPT_PROJ
SAL_SCHOOL2

SAL_SCHOOL3

get

combine

EDPS3
insert@s

)

SAL_SCHOOL1

combine

3
ESBinsert@s

SAL_SCHOOL3

)combine

4
insert@s

get

)

ESD2

get

Figure ��� Initial Query Graphs

��



)d,c((c, d))d,c((( 1 2, , 3 ) get ))get )3,,21(( (c,d ) )d,c( (c, d )

)d,c((c, d))d,c((( 1 2, , 3 ) get )

)
))c,b,a((

4((get )
))c,b,a((

4((get

4

2

(c,d ) )d,c( (c,d )(( 1 2, , 3 ) )

(( 4((a , b,c )))

DEPT_PROJ SAL_SCHOOL2 SAL_SCHOOL3

combine

EDPS3insert@s

insert@s 2 ESD1

combine )

SAL_SCHOOL2SAL_SCHOOL1
Figure ��� Step � of Multiple Query Optimization

��



��� insert�s� EDP

combine����a�b�� ��a�b���

get����a�b�� ��a�b���

from DEPT PROJ�s�

��� insert�s� EDPS

combine����c�d�� ��c�d�� ��c�d���

�i� get����c�d�� ��c�d�� ��c�d���

from DEPT PROJ�s�

�ii� get����c�d�� ��c�d�� ��c�d���

from SAL SCHOOL��s�

�iii� get����c�d�� ��c�d�� ��c�d���

from SAL SCHOOL��s�

��� insert�s� ESB

combine����a�b���

get����a�b��

from SAL SCHOOL��s�

��� insert�s� ESD�

combine����a�b�c���

�i� get����a�b�c���

from SAL SCHOOL��s�

�ii� get����a�b�c���

from SAL SCHOOL��s�

	�� insert�s� ESD�

combine����d���

get����d���

from SAL SCHOOL��s�

The above set of modi
ed SQL statements will be optimized further by specifying

only the relevant data that needs to be extracted from each of the component relations�

This is the next step of query modi
cation� where the sub fragments given by the in�

tersection of the fragment in the get expression and representation of the relation ac�

cessed is the actual fragment that is retrieved from that relation� For example� the set

�



of grid cells to be retrieved from DEPT PROJ is ���c�d�� ��c�d�� ��c�d��� and the represen�

tation of DEPT PROJ is ���a�b�c�d�� ��a�b�c�d��� hence the actual set of grid cells retrieved

is ���c�d�� ��c�d�� ��c�d��
T
���a�b�c�d�� ��a�b�c�d��� which is ���c�d�� ��c�d��	 This optimization step is

illustrated in the Figure �
 and the modi�ed query descriptions follow	

��	 insert�s� EDP

combine����a�b�� ��a�b���

get����a�b�� ��a�b���

from DEPT PROJ�s�

��	 insert�s� EDPS

combine����c�d�� ��c�d�� ��c�d���

�i� get����c�d�� ��c�d���

from DEPT PROJ�s�

�ii�get���c��

from SAL SCHOOL��s�

�iii�get���d��

from SAL SCHOOL��s�

��	 insert�s� ESB

combine����a�b���

get����a�b��

from SAL SCHOOL��s�

�	 insert�s� ESD�

combine���a�b�c���

�i� get���a�b���

from SAL SCHOOL��s�

�ii�get��c��

from SAL SCHOOL��s�


�	 insert�s� ESD�

combine���d���

get���d���

from SAL SCHOOL��s�

��



)get )(( )c(3

4

2

(c,d ) )d,c( (c,d )(( 1 2, , 3 ) )

)

DEPT_PROJ SAL_SCHOOL2 SAL_SCHOOL3

combine

EDPS3insert@s

insert@s 2 ESD1

combine )

SAL_SCHOOL2SAL_SCHOOL1

3 ( )((get )d

)b,a(
4((get )) )

)c(
4((get )

(( 4 (a , b,c ) )

(c, d))d,c((( 1 2, )get )

Figure ��� Step � of Multiple Query Optimization

��



The materialization of the new distributed database design is done in two phases� the

�rst phase consists of extracting the relevant data from the component relations and sending

it to the sites where it is required� The operation send to�site id�� sends a �le to the site

site id� The second phase consists of combining the data to form the new fragments and

inserting in the corresponding relations� The �rst phase which retrieves the relevant grid

cells from the fragments in the minimal cover of the current design and stores them in the

temporary tables is described below�

��� get����a�b�� ��a�b��� � send to�s�� as TempTable��

get����c�d�� ��c�d��� � send to�s�� as TempTable�

from DEPT PROJ�s�

��� get����a�b��� � send to�s�� as TempTable��

get��	�a�b��� � send to�s�� as TempTable�

from SAL SCHOOL��s�

	�� get��	c�� � send to�s�� as TempTable��

get���c�� � send to�s�� as TempTable�

from SAL SCHOOL��s�

��� get��	d�� � send to�s�� as TempTable	�

get����d��� � send to�s�� as TempTable


from SAL SCHOOL	�s�

The set of statements below specify the actions that need to be taken at the sites of the

fragments of the new distributed database design� Note that the operation send to sends the

temporary tables to the sites where the respective new fragments need to be materialized�

These statements are self explanatory�

���� insert�s� EDP

combine�TempTable��

���� insert�s� EDPS


�



combine�TempTable�� TempTable�� TempTable��

���� insert�s� ESB

combine�TempTable��

���� insert�s� ESD	

combine�TempTable��TempTable��


��� insert�s� ESD�

combine�TempTable��

The above set of operations are generated by the optimization process for the initial set

of queries generated to materialize the redesigned distributed databases� These operations

are again translated to a set of SQL statements that need to be executed at each of the sites

of the distributed database environment� The set of SQL statements are enclosed between

constructs beginfconcurrentg and endfconcurrentg� and are executed simultaneously� Fig�

ure � shows the combined query graph� The central nodes of the graph are the get nodes�

these nodes retrieve the relevant set of grid cells from a fragments of current design to be

used in materializing a fragment of the new design� Hence there are arrows coming in from

the fragments of the current design showing which grid cells are being accessed� and there

are arrows going into the combine statements which specify the grid cells being used to

form the fragments of the new design�

The modi�ed query expressions speci�ed above are translated into SQL statements to

de�ne the temporary tables that are generated� and to merge �i�e�� use the relational algebra

operations union and join to combine the temporary tables to form a mixed fragment� these

temporary tables to form the fragments of the new design� Thus this optimization procedure

generates a set of SQL statements that need to be executed at the sites of the fragments of

the current design� and at the sites of the fragments of the new design�

At site s��

beginfconcurrentg

INSERT INTO TempTable� Emp�� Name� City� Dept�� Proj�

SELECT Emp�� Name� City� Dept�� Proj�

FROM DEPT PROJ

�	



ESD1
insert@s 2

ESD3
insert@s 4

ESB
insert@s 3

EDPS
insert@s 3

insert@s
EDP

1

combine (( 4d))

get ) d4(( ) 

b,a(
(( 3combine

)
))

(c,d ))d,c((c,d ) ))3,,21((combine

DEPT_PROJ SAL_SCHOOL1 SAL_SCHOOL2 SAL_SCHOOL3
@s @s @s @s1 2 31

)

d )

(a , bget ((1(a , b ) 2 ), )

(a , b
(( 3 )get

)
)

)b,a(4((get ))

(c,d ))d,c(((1 2, )get ) )get )(( c3 get (( 3 ) 

)c4((get )

))c,b,a(4(( ) combine

combine ) ), )b,a(2)b,a(1((

Figure ��� Combined optimized query graph

��



WHERE Dept� � �� AND �� � Dept� � ���

INSERT INTO TempTable� Emp�� Name� City� Dept�� Proj�

SELECT Emp�� Name� City� Dept�� Proj�

FROM DEPT PROJ

WHERE Dept� � �� AND �� � Dept� � ���

INSERT INTO TempTable� Emp�� Salary� Bonus

SELECT Emp�� Salary� Bonus

FROM SAL SCHOOL�

WHERE �� � Dept� � ���

INSERT INTO TempTable� Emp�� School� Degree

SELECT Emp�� School� Degree

FROM SAL SCHOOL�

WHERE �� � Dept� � ���

endfconcurrentg

send to	s�
 TempTable�

send to	s�
 TempTable�

send to	s�
 TempTable�

At site s��

beginfconcurrentg

INSERT INTO TempTable� Emp�� School� Degree

SELECT Emp�� School� Degree

FROM SAL SCHOOL�

WHERE Dept� � �� AND �� � Dept� � ���

INSERT INTO TempTable� Emp�� Salary� Bonus

SELECT Emp�� Salary� Bonus

FROM SAL SCHOOL�

WHERE Dept� � �� AND �� � Dept� � ���

endfconcurrentg

send to	s�
 TempTable�

At site s��

beginfconcurrentg

INSERT INTO TempTable� Emp�� Salary� Bonus

SELECT Emp�� Salary� Bonus

��



FROM SAL SCHOOL�

WHERE Dept� � ���

INSERT INTO TempTable� Emp�� School� Degree

SELECT Emp�� School� Degree

FROM SAL SCHOOL�

WHERE Dept� � ���

endfconcurrentg

send to�s�� TempTable�

Following are the set of SQL statements that need to be executed at each of the sites

where the fragments of the new distributed database design need to be materialized	 Note

that the actual relation names and column names are used instead of the representations

of the vertical and horizontal fragments	

At site s�


INSERT INTO EDP Emp�� Name� City� Dept�� Proj�

SELECT Emp�� Name� City� Dept�� Proj�

FROM TempTable��

At site s�


INSERT INTO ESD� Emp�� School� Degree

SELECT Emp�� School� Degree

FROM TempTable�� TempTable�

WHERE TempTable�	Emp� � TempTable�	Emp��

At site s�


INSERT INTO EDPS Emp�� Name� City� Proj�� Dept�� Salary� Bonus

SELECT Emp�� Name� City� Proj�� Dept�� Salary� Bonus

FROM TempTable�� TempTable�

WHERE TempTable�	Emp� � TempTable�	Emp�

UNION

SELECT Emp�� Name� City� Proj�� Dept�� Salary� Bonus

FROM TempTable��

�



INSERT INTO ESB Emp�� Salary� Bonus

SELECT Emp�� Salary� Bonus

FROM TempTable��

At site s��

INSERT INTO ESD� Emp�� School� Degree

SELECT Emp�� School� Degree

FROM TempTable��

In the next section the algorithm to optimize the set of SQL statements to materialize

the new design is given�

��� MQO Algorithm to Materialize Distributed Database Design

The algorithm consists of the following steps�

MQO materialization�SQL in� SQL out�

Input� SQL in a set of SQL statements generated by the query generator algorithm�

Output� SQL out optimized set of SQL statements to be executed at various sites of the

distributed database environment�

�� Select a site s� in the distributed database environment to be the coordinator site for

the MQO� All the query modi	cation steps will be performed at the site s��

�� For each f �
� F �� the Query Generator generates the following SQL statement�

c
r
f ��� denotes the columns and p
r
f ��� denotes the disjunction of the predicates

speci	ed in the representation of the fragment f ��

INSERT INTO f
�

c
r
f ���

SELECT c
r
f ���

FROM R

WHERE p
r
f ����

�



�� Replace relation R by the fragments in the minimal cover m�f �� generating the fol�

lowing modi�ed SQL statement� ��f �� gives the locations of the sites where f � is to

be allocated

insert���f ��f �

SELECT c�r�f ���

FROM m�f ��

WHERE p�r�f ����

	� Rewrite the SQL statement using the fragment representations
 combine function


and get function� ff���f� j f � m�f ��g lists the fragments in the minimal cover of

the fragment f �
 Then the new generated query expression is�

insert���f �� f �

combine�r�f ���

get�r�f ���

from ff���f� j f � m�f ��g

�� Propagate the get function to each of the fragments in the int�f ��
 thus rewriting the

above query expression gives�

insert���f �� f �

combine�r�f ���

for each f � m�f �� generate�

get�r�f ���

from f���f�

� Modify the grid cells that need to be retrieved from each of the fragments of the

current fragmentation scheme
 giving the new modi�ed query expression as�

insert���f �� f �

�



combine�r�f ���

for each f � m�f �� generate�

get�r�f ��� r�f��

from f���f�

�� Generate two sets of statements one for each fragment of the current fragmentation

scheme and one for each fragment of the new fragmentation scheme� This done by

considering the minimal cover of the fragment f � and the intersect of the fragment

f �

for each f � F generate

for each f � � int�f�

get�r�f�� r�f ��� � send to���f ��� as TempTable�f�f ��

from f���f�

for each f � � F � generate

insert���f ��f �

combinef�m�f ���TempTable�f�f ���

�� Generate the set of optimized SQL statements that need to be generated simultane�

ously at each site of the current and new distributed database designs are�

for each site s � S do�

de	ne frg�s� 
 ff j s � ��f���f� ��f�� � Fg

beginfconcurrentg

for each f � frg�s�

for each f � � int�f� generate

INSERT INTO TempTable�f�f ��c�r�f�� r�f ���

SELECT c�r�f�� r�f ���

��



FROM f

WHERE p�r�f�� r�f ����

endfconcurrentg

for each f � frg�s�

for each f � � int�f�

if ��f� �� ��f �� generate

to send���f ��� TempTable�f�f ���

for each site s � S do�

de�ne frg��s� � ff � j s � ��f ����f �� ��f �� � F �g

for each f � � frg��s� generate

form sql�f ��

The function form sql�f �� generates the SQL statement to materialize the fragment

f �� Note that all the fragments in the current distributed database design and the

new distributed database design are regular fragments� Also	 all the elements of the

set fr�f��r�f �� j f � m�f ��g are regular� Note that the fragments represented by grid

cells r�f��r�f �� de�ne the TempTable�f�f ��� These temporary tables are created in the

previous step� Hence to materialize fragment f � we need to merge these temporary

tables� There are two ways of merging tables	 one is join and the other is union

of tables� So in order to automate this merging process	 the correct order of these

merging operations needs to be generated� Let r�f �� � f��A� ��A� �nAg	and A be set

of horizontal fragments de�ned by predicates a� b� � � � � s� Then the SQL statement to

materialize the fragment f � is�

form sql�f ��

INSERT INTO f � c�f ��

SELECT c�f ��


�



FROM TempTable�f�f ��ff j a � r�f� and f � m�f ��g

WHERE p�a� and join�TempTable�f�f ���ff j a � r�f� and f � m�f ��g

UNION

SELECT c�f ��

FROM TempTable�f�f ��ff j b � r�f� and f � m�f ��g

WHERE p�b� and join�TempTable�f�f ���ff j b � r�f� and f � m�f ��g

UNION

���

UNION

SELECT c�f ��

FROM TempTable�f�f ��ff j s � r�f� and f � m�f ��g

WHERE p�s� and join�TempTable�f�f ���ff j s � r�f� and f � m�f ��g�

The function join takes as its input a set of tables and generates a set of join conditions

to join these tables� For joining k tables� �k � �� join conditions are generated� The

above algorithm �rst joins all the tables to generate the complete horizontal fragments

of the fragment f � and then it performs a UNION of all these horizontal fragments�

To form a horizontal fragment it joins the temporary tables that have this horizontal

fragment included in them and selects only those tuples that satisfy this horizontal

fragment� This is a brute force method to materialize the fragment f �� but any other

method would be much more complex as di�erent cases need to be considered� The

SQL statement to materialize a fragment would depend on the cardinality� shape and

size of the elements of the minimal cover of a fragment� If the minimal cover has only

one element� then the above SQL statement is very simple� If it has two elements�

then the statement uses either a join or a union� But as the number of elements

in the minimal cover increase� it is not always simple to correctly specify the right

order of merging these temporary tables� This is the reason that the above approach

of �rst constructing all the horizontal fragments and then forming a union of them

was selected� In some speci�c cases a simpler SQL statement can be constructed�

but in order to provide a general and correct solution� that approach was not taken�

Moreover� the local database system may use the query optimizer to optimize this

SQL statement so as to execute it e	ciently�







�� The above set of modi�ed SQL statements are then sent from site s
�
to all other

respective sites to be initiated� Once these SQL statements are completely executed�

the new distributed database design is completely materialized�

The above set of SQL statements can be generated by an extensible query optimizer

like VOLCANO �Goe��� and executed at various sites of the distributed database system�

This would require no change in the query decomposition and optimizer modules of the

distributed database system�

��� Performance Improvement

The multiple query optimization that is performed assures the performance of the query

generator method to be the same as that of the operator method� The main di�erence

between the two was that operator would generate all the sub	fragments de�ned by int
f�

of a fragment f � F by reading in the relation only once� Whereas in case of the query

generator method� if there were no suitable indexes� then the relation would be scanned

completely more than once to generate all the sub	fragments� This implied that the query

generator method can perform worse than the operator method�

In this multiple query optimization algorithm all the sub	fragments of a fragment are

generated at once by executing the �rst part of the Step �� This would essentially mean

that the relation would be read only once to generate all the sub	fragments� Of course� this

depends on the implementation of the relational database system� But most commercial

database systems use bu�ering schemes that enable a relation to be read only once� This

is the reason that all the temporary tables are generated simultaneously� As a page of a

relation read can be written into pages of all the temporary tables that require that data

at once� This would require an allotment of some bu�ers to all the temporary tables� With

the amount of main memory that current systems have� it is feasible to do this� Similarly

when merging the temporary tables to form the fragment of the new distributed database

design� all the temporary tables will be read only once�

Thus this optimized query generator algorithms performance in terms of number of disk

accesses will be the same as that of the operator method�

���



��� Summary

In this chapter the queries generated by the query generator were analyzed and optimized

to generate a modi�ed set of queries to be executed at each of the sites of the distributed

database environment so as to materialize the new distributed database design� The perfor�

mance of this optimized set of queries was argued to be that of the operator method� Note

that operator method consists of three phases Divide� Relocate and Conquer� and these

modi�ed set of SQL statements also materialize by �rst generating the temporary tables�

second� moving them to di�erent sites �if necessary�� and third� merging them to form the

new fragments� This optimized set of SQL statements emulate the operator method and

use the distributed database system to materialize the new distributed database design�

The operator method can still be used if the distributed database system cannot handle

redistribution of large sets of data and if the materialization has to be done o� line or

incrementally�

	
	



CHAPTER �

AVERAGE TRANSACTION RESPONSE TIME ESTIMATION

��� General Comments

The average transaction response time is used to evaluate the e�ciency of two distributed

database designs� It is also used as an estimate for the cost of using a particular distributed

database design for a class of applications� This cost value is used by the Markovian deci�

sion analysis technique to generate the optimal policy for the distributed database redesign

methodology in the application processing center scenario� It is very di�cult to come up

with a general analytical model that takes into consideration di�erent interdependent char�

acteristics of the distributed database environment� Hence we present a simulation model

which is general enough to support di�erent characteristics of the distributed database

environment� This model is an extension of the model proposed by �YDR���	�

The method that we are using to estimate the average transaction response time is one

of the many that can be used� The other methods include di�erent simulation models 
like

�CL��	�� di�erent analytical models� and actual measurements on the distributed database

environment� Our goal here is to provide a method to estimate the average transaction

response time� In the formulation of the cost factors in the Markov Decision Analysis

problem we can use any of the above mentioned methods�

Moreover� the simulation model that we are using in this thesis enables us to evalu�

ate the a�ect of change in various parameters on the average transaction response time�

This chapter is organized as follows Section ��� discusses the distributed database envi�

ronment� Section ��� on transaction characteristics� Section ��� on estimating probability

of contention� Sections ��� and ��� on the simulation model and Section ��� on the results

of the experiments conducted�

���



��� The Distributed Database Environment

The distributed database environment that we are considering in this thesis consists of a set

of computers connected by a network� Each of the computers has a relational database sys�

tem that can coordinate as a distributed database system� Following are the characteristics

of the distributed database environment�

�� All the computers are connected by means of a network with a certain data transfer

rate�

�� Each computer system has a database management system that manages a number

of locks�

�� Each computer has a distributed database system that enables access to data from

any other site �computer	 in the distributed database environment�

��� Transaction Characteristics

A transaction is an atomic unit of consistent
 reliable and durable computation� In dis�

tributed database environment there are two kinds of transactions� local transactions and

distributed transactions� A local transaction accesses data only from the site where it was

initiated� A distributed transaction accesses data from more than one site� An application

consists of a set of transactions� It is the applications that are executed in the distributed

database environment� An execution of a transaction consists of loading the transaction

initiation program
 accessing and processing the data from the database
 and �nally com�

mitting or aborting� Figure �� shows the phases of transactions described below�

A local transaction has the following phases during its lifetime�

Initiation The program initiating the local transaction has to be loaded into the main

memory and then executed� This incurs some disk IO�s and some CPU processing�

Database access The transaction then goes through a set of actions� An action being �a

request for a lock�
 �release a lock�
 and �data access�� The data access here is from

the database and hence the time for it will be di�erent from the time required to do

a disk IO� There is some �CPU processing� between any two successive actions�

���



Database Access &

Abort Phase
Commit or

Processing Phase

Initiation Phase

Spawning
Sub-transaction

Initiation Phase

Transaction
End

Transaction
Begin

Transaction
End

Transaction
Begin

Abort Phase
Commit or

Processing Phase
Database Access &

Initiation Phase

Distributed TransactionLocal Transaction

Figure ��� Local and Distributed Transaction Phases

Commit or Abort The transaction then either commits by writing a log record or aborts�

A commit incurs writing a log record to stable storage and then releasing the locks

held�

A distributed transaction has the following phases during its lifetime�

Initiation The program initiating the distributed transaction has to be loaded into the

main memory and then executed� This incurs some disk I�O�s and some CPU pro�

cessing�

Spawning The distributed transaction spawns a number of sub�transactions as local trans�

actions at di	erent sites� This incurs some communication delay to initiate sub�

transactions at di	erent sites� These local transactions access and process the data


��



from the database as given above� Once the local sub transactions of the distributed

transaction �nish their processing� there is some data that is transferred to the site

where the distributed transaction is initiated�

Commit or Abort Once the local sub�transactions �nish processing the data accessed

from the local database� the distributed transaction initiates a two phase commit

protocol� The distributed and its local sub�transactions commit or abort based on

the outcome of the commit protocol�

On any given computer of the distributed database environment both local and dis�

tributed transactions are executed concurrently� Hence they may contend for the locks on

the data item they access� In case a transaction A contends for a lock with transaction B�

then transaction A has to wait until either transaction B either commits or aborts� The

wait time for a transaction A during contention is directly proportional to the lock hold

time of the transaction B�

In order to take into consideration the a�ect of contention on the transaction response

time� we can explicitly model data contention or estimate the probability of contention for

each lock� In this thesis the latter choice is opted for as this makes the simulation model for

transaction processing in distributed database environment simple� This will also reduce

the amount of time taken to run the simulation� If the data contention is modeled explicitly

with about ���K data items� and the transactions access these data items randomly� then

there is a lot of bookkeeping that needs to be done so as to keep track of data contention�

This bookkeeping which is required for each transaction slows down the simulation�

The e�ect of contention on transaction response time is cyclic in nature� That is� the

contention increases the transaction response time� which increases average lock hold time�

which in turn increases the probability of contention� This cyclic a�ect of contention needs

to be incorporated into the simulation model� If the distributed database environment being

simulated is stable� then the system stabilizes to a value of probability of contention� We

shall present a mechanism to estimate the probability of contention and will use it in the

simulation�

��� Estimating the Probability of Contention

Let �l and �d be the arrival rate of local and distributed transactions at each site respec�

tively� Let Nl and Nlt be the number of locks on an average requested by local transactions

��	



and local sub�transactions of distributed transactions respectively� Let Pl be the probability

that a transaction being executed at a site is a local transaction� Let Plt be the probability

that a transaction being executed at a site is a local sub transaction of a distributed trans�

action� Let each distributed transaction fork into nt sub�transactions on an average� then

the arrival rate of local sub transaction of distributed transaction at each site as nt��d� Let

the number of sites in the distributed database environment be NDS� and let the number

of locks in the distributed database environment be LSPACE� Then the probability of

contention of a local transaction with a local transaction denoted by P
l�l
CONT is given by�

P
l�l
CONT �

��l � nt�d	NlPl
LocalLockHoldT ime

�

LSPACE�NDS
�
	

The numerator gives us the average number of transactions held by local transactions

estimated by the product of average number of locks requested by local transactions and

the average lock holding time of local transactions as given by Little�s Law� Each computer

system of the distributed database environment is the master of LSPACE�NDS locks� The

average lock holding time is given by LocalLockHoldTime�� assuming that the transaction

acquires locks uniformly over the time it holds the locks� The above formula is the adapta�

tion of the technique from CDY��� to the distributed relational database environment�

Similarly� the other probabilities of contentions are given by�

P
l�lt
CONT �

��l � nt�d	NlPl
DistLockHoldT ime

�

LSPACE�NDS
��	

P
lt�l
CONT �

��l � nt�d	NltPlt
LocalLockHoldT ime

�

LSPACE�NDS
��	

and

P
lt�lt
CONT �

��l � nt�d	NltPlt
DistLockHoldT ime

�

LSPACE�NDS
���	

Note that the probabilities of contention of a transaction is directly proportional to the

lock hold time of the transactions they contend with� In the simulation� the lock hold times

are actually measured and averaged over a number of transactions� These values are used

in the above formulae to estimate the probabilities of contention�

���



��� A Model For The Locking Mechanism

The model for locking mechanism developed by �YDR���� is extended to model the con�

tention in a distributed relational database transaction processing environment� Each trans�

action that enters the distributed database environment is either a distributed transaction

or a local transaction� The percentage of distributed transactions is �xed for each sim�

ulation run� As described in Section 	�
� a distributed transaction under�goes initiation�

sub�transaction spawning and commit or abort phases� The initiation phase consists of some

CPU processing with interleaved disk accesses� The sub�transaction spawning phase incurs

some CPU overhead and communication delay to spawn a number of sub�transactions at

di�erent computer systems of the distributed database environment� Each of these sub�

transactions like local transactions go through the initiation phase and the database access

and processing phase� It is while accessing the tuple from the database that the transaction

may have contention with other transactions� Figure � shows a model of lock manager

being used in our distributed database environment�

The lock manager is the core of the database system that manages the access to the data�

After the initiation phase� each local transaction or local sub�transaction of the distributed

transaction enters the phase of database access and processing which is governed by the

lock manager� Each transaction has a number of prede�ned actions� These actions are

enumerated as number of data accesses� number of locks requested� number of unlocks� and

transaction termination� In our approach� we use the wait lock model �YDR����� that is�

the CPU is not released when a lock request is made� When a lock request is made� the CPU

waits for the response of lock manager� if the lock is �granted� the transaction continues�

otherwise there is a �contention� resulting in the CPU to switch to another transaction by

paying the task switch overhead�

A contention results in the transaction to wait for the lock to be released� The database

tuples are not explicitly modeled� The probability of contention derived in Section 	�� will

be used to decide whether a transaction must wait� The transaction releases some of its

locks during its database access and processing phase� but releases all its remaining locks

at the commit or abort phase� The transaction does not wait for the response for its unlock

request �which is assumed to take negligible amount of time� from the lock manager and

continues with its actions� The local transaction �or local sub�transaction of a distributed

transaction� undergoes a number of data accesses from the database during which locks are

��	



Communication
Delay

{ }Distributed
Subtransactions

Delay
Communication

distributed)
(local or 

Transactions

Wait for Unlock (Contention)

No Contention

Unlocks
Asynchronous

Local/Global Unlocks
Commit Ov.Hd. Disk I/O

Local/Global Unlocks(Read Only)

Local/Global Unlocks
Abort

CPU

Commit

Disk I/O

Lock

Transactions
Complete

Figure ��� Simulation Model For Lock Contention

held on the data� This has to be explicitly modeled because the wait time due to contention

is proportional to the part of the response time during which the locks are held�

The local transaction commit consists of writing into the stable storage a write�ahead

log so that the transaction can be recovered in case of failure of the system� Once the

write�ahead log is written� any locks held by the transaction are released� For a distributed

transaction a two�phase commit protocol is used�

��� Simulation Model

The distributed transaction processing system outlined in the previous section was simulated

using an event driven simulation model� An open queuing model with Poisson transaction

�	�



Table �� Workload Parameters

Parameter Value

Trans Rate � to �� Trans��sec�system

Percentage of Distributed Trans �� to ��

Avg Num of Sub�trans�Distributed trans 	

Locks�Local Trans 	�

Unlocks�Local Trans 	�

Unlocks at purge for Local Trans 


Initiation I�O Local Trans �

Locks�Local Sub�Trans ��

Unlocks�Local Sub�Trans ��

Unlocks at purge for Local Sub�Trans �

Data accesses for Local Trans 	�

Data accesses for Local Sub�Trans ��

Trans path length for Local trans 	�	��� ins�

Trans path length for Local Sub�Trans �
���� ins�

Avg Communication Delay for Distributed Trans ��� Sec to ��� Sec

arrival process is assumed� This is reasonable for modeling the system throughput versus

response time characteristic� For a large number of transactions with response time of few

seconds the net transaction arrival process is independent of the response time�

There are two kinds of parameters that are considered in the simulation model namely

workload and system� The workload parameters characterize the behavior of the transaction

in terms of transaction path length number of locks unlocks and data accesses� The

system parameters are much more static parameters of the distributed database environment

like CPU MIPS the lock manager response time the data access time� The overheads

required to carry out various actions �like lock unlock commit etc�� are also modeled� The

frequency of the overheads and actions depends on the workload parameters� Table � shows

the workload parameters and Table � shows the system parameters used in our simulation

runs� These parameter values have been adapted from those used by �YDR���� to model

concurrency control in multi�system environments and by �CDY��� in their analysis of

replication of distributed database systems�

A transaction that arrives at a system is designated as a local or distributed transaction�

Then after the initiation phase the local transaction enters the lock holding phase �i�e�

���



Table �� System Parameters

Parameter Value

Num of Systems NDS ��

Initial disk access time �� Mill�Sec

Lock Service time ��� Micro�Sec

Num of Locks in Distributed Database System ������

database access and commit or abort phases together	
 In this phase the di�erent actions

of the transactions are modeled as multiple class jobs with the CPU as the dispatcher queue


The sum of the average number of locks� unlocks� database IO�s and commit� will

be referred to as the number of events per transaction
 The total transaction path length

�average number of instructions executed per transaction	 is divided by the number of events

to give the average number of instructions executed between two consecutive events
 In the

model� a transaction runs on a CPU for a time corresponding to the instructions between

events
 The event after this is modeled as a lock� unlock� data access or a commit action

with probability computed as the ratio of the average number of each of these events per

transaction to the average number of events per transaction
 This leads to a geometrically

distributed transaction path length with correct mean


The modeling of a lock request is an important aspect of the simulation
 After the

transaction requests the CPU for a lock� it is routed to the lock manager
 Once the lock

manager grants the lock after certain delay� the transaction joins the CPU queue for the

next inter event path length
 If the transaction has a contention for the lock then it is

handled as given below


The simulation models the cyclic nature of the e�ect of probability of contention on

transaction response time and vice versa by using a feedback process
 As mentioned in

Section �
�� the probability of contention is proportional to lock request rate and average

lock hold time
 The initial estimate of probability of contention is based on no contention


During the simulation the probability of contention is calculated based on average transac�

tion response time of previous few thousand transactions
 This new calculated probability

of contention is used for the next few thousand transactions
 This is done iteratively till

there is no appreciable change in probability of contention values for two consecutive runs


The commit of a local transaction is modeled as additional disk IO to update the log in the

���



stable storage� In case of distributed transaction the commit is modeled as a disk I�O at

each of the sites participating in the commit protocol to update the log in the stable storage�

Additionally� a ���th of the communication delay is used as a measure of communication

delay for two�phase commit protocol�

The spawning of local sub�transactions involves a CPU overhead and a communication

delay for initiating a local sub�transactions on di�erent systems� The communication delay

for data and message passing between the distributed transaction and local sub�transactions

is also based on a single communication delay value� The total communication delay starting

from initiating the local sub�transactions till the start of two�phase commit protocol is

modeled as twice the average communication delay for distributed transaction� This is

because there is communication delay involved in spawning the local sub transactions of a

distributed transaction� and data transfer after the local sub transactions have processing

the data� The actual amount of time spent on data transfer can be estimated from the

trace driven simulation of the distributed transactions�

��� Experiments

Given a set of system and workload parameter values� the above simulation can be run to

calculate the average transaction response time� This enables us to compare two distributed

database designs by comparing the average transaction response times when they are used

to execute a class of applications� This simulation model can also be used to analyze the

e�ect of change in some of the parameters on the average transaction response time� The

arrival rate for transactions is that of both local and distributed transactions together�

����� E�ect of Data Access Time

We have been using data access instead of disk I�O in this thesis� Disk I�O is the time taken

to access a page or a set of pages from the stable storage 	mostly disk
� The data access

time includes the amount of CPU processing involved in accessing a page of tuples from

the relation� Thus an increase in data access time is caused by executing the data access

routines on a computer with smaller MIPS rating� Also increase in page size increases the

data access time� We use the transaction arrival rate as � transactions�sec�system� and

average communication delay as ��� seconds� The data access time is varied from ���

seconds to ���� seconds� Initially� we have the average transaction response time increase

���



as the percentage of distributed transactions increase �for the case where data access time

equals ���� Sec�� But as the data access time increases� the average transaction response

time �rst decreases and then increases as the percentage of distributed transactions increase�

This implies that there is an optimal percentage of distributed transactions which gives the

minimum average transaction response time� This is percentage is about 	
 when data

access time is ���� second and about � when the data access time is ���� second�

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

10 20 30 40 50 60 70 80 90

A
v
g
 
T
r
a
n
s
 
R
e
s
p
 
T
i
m
e

Percentage of Distributed Trans

Data Access = 0.06 Sec
Data Access = 0.07 Sec
Data Access = 0.08 Sec
Data Access = 0.09 Sec

Figure 	�� E�ect of Data Access Time on Average Transaction Response Time

This is because while the distributed transaction time is waiting for the communication

delay� the local transaction can access the data and process it� At lower percentage of local

transactions� there are not enough local transactions to take advantage of this scenario�

But as the percentage of local transactions increase more transactions can take advantage

of this scenario� But as the percentage of local transactions exceed the optimal point� they

start having contention among themselves� and thus increasing average transaction response

time� As the data access time increases� the optimal percentage point for distributed trans�

actions increase� this is because the local transactions start holding locks for longer period

thus having higher probability of contention which results in the increase in the average

transaction response time�

��	



����� E�ect of Arrival Rate of Transactions

In this subsection the e�ect of change on the arrival rate on average transaction response

time is studied� The increase in arrival rate increases the contention for data access� thus

increasing the average transaction response time� This depends on the average number of

data accesses made per local transaction� and per local sub�transaction of the distributed

transaction� In our �rst experiment the communication delay was � second� and the data

access time was ��� seconds� The local transaction on an average perform 	� data accesses

and the local sub�transactions of the distributed transaction on an average perform �� data

accesses�

4

5

6

7

8

9

10 20 30 40 50 60 70 80 90

A
v
g
 
T
r
a
n
s
 
R
e
s
p
 
T
i
m
e

Percentage of Distributed Trans

Arrival Rate 5 Trns/sec
Arrival Rate 10 Trns/sec
Arrival Rate 15 Trns/sec

Figure 	�
 E�ect of Arrival Rate on Average Transaction Response Time
 I

As the arrival rate increases from � trans�sec till �� trans�sec� the average transaction

response time increases� But as the percentage of the distributed transactions was varied�

for low arrival rates there is not much contention and hence larger percentage of local

transactions gives the best average transaction response time� This percentage is about ��

But as the arrival rate increases to �� transactions per second the contention among local

transactions increase and thus increasing the average transaction response time� This is the

reason that larger percentage of distributed transactions give the best average transaction

��	



response time� By doing this� the contention among the local transactions is reduced� The

percentage of distributed transactions that give this average transaction response time is

���

When the arrival rate of transactions is ��� the contention among local transactions

is very high which increases the average transaction response time� When the percentage

of local transaction is very large� the average transaction response time is also large� But

as the percentage of local transactions decreases the contention decreases and the average

transaction response time decreases� The best average transaction response time occurs

when the percentage of the distributed transactions is about ��� Note that as the percentage

of distributed transactions increases� the contention among them increases giving rise to an

increase in average transaction response time�

An increase in arrival rate increases the probability of contention� thus increasing the

average transaction response time� The increase in probability of contention depends on

the number of data accesses� If the number of data accesses for local transactions are more

than that of local sub�transactions of the distributed transactions� then it is better to have

some percentage of distributed transactions and this percentage increases as the arrival rate

increases�

The case where the number of data accesses for local transactions is comparable to the

number of data accesses for sub�transactions of the distributed transaction is illustrated in

Figure 	�� The number of data accesses for local transaction is ��
transaction� and that

for a sub�transaction of a distributed transaction is ��
sub�transaction� For this case the

average transaction response time for a distributed transaction is persistently higher than

that of a local transaction� Hence the optimal percentage of distributed transactions for the

least average transaction response time is zero� Also note that increasing the arrival rate of

transactions to �� transactions
sec� the optimal percentage of the distributed transactions

remains at zero because the number of data accesses for local transactions is comparable to

the number of data accesses for sub�transaction of a distributed transaction�

����� Evaluation of the Optimal Percentage of Distributed Transactions

The average transaction response time in the distributed database environment was simu�

lated for a range of data access times from ���� seconds to ���� seconds and communication

delays from zero seconds till ��� seconds with arrival rate of �� transactions per second�

���



3

4

5

6

7

10 20 30 40 50 60 70 80 90

A
v
g
 
T
r
a
n
s
 
R
e
s
p
 
T
i
m
e

Percentage of Distributed Trans

Arrival Rate 5 Trns/sec
Arrival Rate 10 Trns/sec
Arrival Rate 15 Trns/sec

Figure ��� E�ect of Arrival Rate on Average Transaction Response Time� II

For each simulation the data access time and the communication delay were �xed and the

percentage of distributed transactions was varied from �� to ��	 The average number of

data accesses for each local transaction was ��
 and for each sub�transaction of a distributed

transaction was ��	 The percentage of distributed transactions for each run that gives the

least average transaction response time was determined	 The data access time was �xed

and the communication delay was varied from zero seconds till �	 seconds	 Below certain

communication delay it was better to have all distributed transactions as shown in the

Figure �� by the graph line Below All Distributed	 This means that the time spent on

data transfer is less compared to the amount of time spent on data access for a distributed

transaction	 Therefore
 all the transactions in the distributed database environment need

to be distributed to give the least average transaction response time	 Similarly
 above a

certain communication delay it was better to have all local transactions as illustrated by

the graph line Above All Local in Figure ��	 That is the amount of time spent on data

transfer is more than the about of time spent on data access	 Therefore
 all transactions

executed in the distributed database environment need to be local to give the least average

transaction response time	 This graph clearly shows the trade o� between the amount of

time a distributed transaction can spend on data transfer and data access	

��



-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.010.020.030.040.050.060.070.080.09 0.1

C
o
m
m
u
n
i
c
a
t
i
o
n
 
D
e
l
a
y

Data Access Time

Below All Distributed
Above All LOcal

Figure ��� Evaluation of Optimal Percentage Points with Arrival Rate �� trns�sec

For the communication delay in the range between the two graph lines� it is better

to have a certain percentage of distributed transactions for the least average transaction

response time	 Note that as the data access time increases� the range of communication

delay over which it is better to have some percentage of distributed transactions increases	

For example� when it is �	�
 seconds the range is from �	� seconds till �	
� seconds	 whereas

when the data access time is �	�� seconds� the range is from �	�
 seconds till �	
� seconds�

That is� if the average communication delay in the distributed database environment is

below �	�
 seconds� it is better to have all distributed transactions� if it is above �	
� it is

better to have all local transactions� and if it is in the range ��	�
��	
� then it is better

to have some percentage of distributed transactions	 Note that this range increases as the

data access time increases	 Mainly� it is the communication delay value for Above All

Local that increases exponentially as the data access time increases	 This is because the

communication delay for the distributed transaction is compensated by the delay due to

data contention for the local transactions	 Only when the delay due to data contention for

local transactions o�sets the e�ect of communication delay for a distributed transaction�

that it is better to have all local transactions	 As data access time increases� the delay due

to data contention for local transactions increases� and it takes higher communication delay

���



to overcome this� so as to make it better to have all local transactions�

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.010.020.030.040.050.060.070.080.09 0.1

C
o
m
m
u
n
i
c
a
t
i
o
n
 
D
e
l
a
y

Data Access Time

Below All Distributed
Above All LOcal

Figure ��� Evaluation of Optimal Percentage Points with Arrival Rate �� trns�sec

This increase in the range is much more prominent when the arrival rate of transactions

is increased to �� transactions�second as shown in the graph of Figure ��� For this case

when the data access time is 	�	
	 seconds� the range for communication delay is from 	���

seconds till ��� seconds� This is because the higher arrival rate increases the delay due to

data contention for local transactions much more than that for distributed transactions�

For high values of data access times and communication delay� the distributed database

environment was found to be unstable� Hence� for the case of the arrival rate of �	 trans�

actions�second� data access time until 	�	 seconds was considered� and when the arrival

rate was �� transactions�second� data accesses time until 	�	
 seconds was considered� But

the interesting observation is that for a wide range of communication delay it is bene��

cial to have some percentage of distributed transactions when the arrival rate is �	 or ��

transactions�sec and data access time is greater than 	�	�	 seconds�

The simulation results in Figures �� and �� show that the range of communication delay

over which it is better to have a percentage of distributed transactions increase as the data

access time increases� But for a given data access time and an arrival rate of transactions� it

��




0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5O
p
t
i
m
a
l
 
P
e
r
c
e
n
t
a
g
e
 
o
f
 
D
i
s
t
T
r
a
n
s

Communication Delay

AR=10; DAT=0.07
AR=15; DAT=0.07
AR=10; DAT=0.09

Figure ��� Optimal Distr Trans Percentage Over CommDelay

will be of interest to know what these optimal distributed transaction percentages are over

this range of communication delay� The simulation results shown in Figure �� illustrate the

optimal percentage of distributed transactions for three combinations of arrival rates and

data access time� The �rst two cases are when the data access time is ���� seconds but the

arrival rates are 	� transactions
sec and 	� transactions
sec� In both these cases for zero

communication delay it is better to have all distributed transactions �	���� But as soon as

communication delay increases to ���� seconds� it is better to have only �� of transactions

as distributed� This is because local transactions can access the data when distributed

sub transactions are waiting because of the communication delay� This increases the over

all concurrency in executing the transactions� and thus decreases the average transaction

response time� For the arrival rate 	� transactions
sec the optimal percentage of distributed

transactions quickly drops to zero when the communication delay is 	�� seconds� But

when the arrival rate is 	� transactions
sec there is more data contention and the optimal

distributed transactions percentage drops slowly to zero for the communication delay of

���� seconds� An increase in data access time with same arrival rate has the same e�ect

as that of increasing the arrival rate� That is� it increases the data contention� which

means a slow drop in optimal distribution transaction percentage as communication delay

		�



increases� With the arrival rate of �� transactions�sec and data access time as ���� seconds�

the optimal distributed transaction percentage drops slowly to zero for the communication

delay of ��	 seconds�

There is a range of communication delay where the optimal distributed transactions per


centage remains fairly steady �especially when there is a slow drop in optimal distributed

transactions percentage as communication delay increases�� This range is ��	����� seconds

with optimal distributed transaction percentage being ��� when arrival rate is �� transac


tions�sec and data access time is ���� seconds� and it is ���	����	� seconds with optimal

distributed transaction percentage being ��� when arrival rate is �	 transactions�sec and

data access time is ���� seconds� Having such ranges of communication delays with a steady

optimal distributed transactions percentage is helpful in selecting the network environment

for the distributed database system� This also gives more freedom in allocating the frag


ments� As increasing the communication delay does not a�ect the optimal percentage of

distributed transactions� But for the cases when there is a steep drop in optimal distributed

transactions response time� there is very little �exibility in choosing the network con�gura


tion or little freedom in allocating the data�

������� Practical Applicability

In the previous subsection� the tradeo� between the data access time and communication

delay was presented� But there was no connection between the parameter values used and

the applications being executed in reality� In this section the parameter values are used to

specify the amount of data that can be accessed from di�erent sites based on the network

characteristics� A distributed transaction spends twice the time for communication delay

on the data transfer� Hence if the communication delay is � second� then � seconds of the

response time are used for data transfer� Moreover� the data can be transferred concurrently

between many sites�

Table � shows the maximum amount of data that can be transferred between two sites in

the distributed transaction processing environment for various network data transfer rates�

The network data transfer rates considered are ���Kbs� ��	��Mbs �T� line�� �	Mbs �T�

line�� �	Mbs� �	�Mbs �FDDI�� and ��	Mbs� In future it should be possible to lease lines

that can transfer data at the rates of gigabits per second� In distributed relational database

systems� the distributed query processor optimizes the transactions so that only the neces


sary data is transferred between the sites� This is done by using local query optimization

���



Table �� Maximum Data Transfer for Distributed Transaction Processing

Data Transfer Rates
Communication ��� ���		 �� 	� ��
 ���

Delay Kbps Mbps Mbps Mbps Mbps Mbps


��� Sec �K ����K ����K ���M ����M �M


�� Sec ��K ��K �����M ���M ����M ��M

��
 Sec �K ��K ���M ����M ��M ���M

��
 Sec �	K ���K ���M ���	M ����M ��M

��� Sec �
K ���K ����M ��M �	M �
M

and semi�joins� Figure � shows that it is bene�cial to distribute all the transactions when

the communication delay is less than 
��� seconds� Therefore maximum amount of data

that can be transferred between a coordinating site and each of the subtransaction sites

varies from �Kbytes to �Mbytes� for data transfer rates of ���Kbps to ���Mbps� This is

an extremely wide range� Therefore� at higher data transfer rates �	�Mbps or greater� there

will still be some application processing environments that fall within this range� At lower

data transfer rates it is di�cult to support distributed sub transactions that access large

amounts of data and send it to the coordinating site�

Figure � shows that the communication delay range within which it is bene�cial to

have some distributed transactions increases as the data access time increases� For some

data access times we now show the maximum amount of data that can be transferred by

the distributed transactions� When the data access time is �
 milliseconds� the range of

communication delay over which it is better to have some percentage of distributed transac�

tions is �
�
���
� seconds� The maximum data that can be transferred with communication

delay of � second varies from �Kbytes to ���Mbytes for data transfer rates from ���Kbps

to ���Mbps� Note that even for smaller data transfer rates the maximum amount of data

that can be transferred between each of the subtransactions and the coordinator of the

distributed transaction is �Kbytes� Therefore� at higher data transfer rates ���Mps or

greater� there will be application processing scenarios that fall within this range� This is

more evident when the data access time increases to �
 milliseconds� and the communica�

tion delay range over which it is better to have some percentage of distributed transaction

is �
�
���
� seconds� The maximum data that can be transferred with communication delay

as � seconds varies from �	Kbytes to ��Mbytes for data transfer rates from ���Kbps to

��




���Mbps� Therefore� in this case also there will be application processing scenarios that

transfer this amount of data to process the distributed transactions� Similarly� it can shown

for the case when the arrival rate of transactions is ���second that there will exist ap�

plications that do have data transfer within the speci	ed maximum limits to process the

distributed transactions�

From the above discussion it can be seen that this particular classi	cation of a range of

communication delay into three parts� namely� all distributed transactions� some percentage

of distributed transactions� and all local transactions is meaningful� and can be used by the

distributed database designer in selecting the right distributed database design for a class

of applications� These ranges of communication delays over which it is better to have

some percentage of distributed transactions will vary as the parameters of the distributed

database environment change� Depending upon the communication technology being used�

one would select an appropriate communication delay in the computation�

����� E�ect of Number of Data Accesses

In this experiment data access time was 	xed at �
 milliseconds and the communication

delay was 	xed at � second� For a 	xed number of data accesses for each sub transaction

of a distributed transaction� the number of data accesses for local transaction was changed

and vice versa�

In Figure ��� the number of data accesses for a local sub transaction of a distributed

transaction was 	xed at �
 per distributed sub transaction� and the number of data accesses

was varied from �
 to �
 for local transactions� The transaction arrival rate was 	xed at ��

transactions per second� When the number of data accesses for local transactions was �
 or

�
� there were enough data accesses to take advantage of the waiting time of the distributed

transactions due to the communication delay� Also the number of data accesses for local

transactions was small enough not to have high lock contention� Therefore the least average

transaction response time is when all transactions are being executed are local� But when

the number data accesses for local transactions is increased to �
� there is too of contention

for locks� This increases the transaction response time for local transactions� Therefore� the

average transaction response time is increased� The least average transaction response time

is got for �
 percent of local transactions� This is because by decreasing the percentage

of local transactions� the lock contention is decreased� and the processing is distributed�

���



2

3

4

5

6

7

10 20 30 40 50 60 70 80 90

A
v
g
 
T
r
a
n
s
 
R
e
s
p
 
T
i
m
e

Percentage of Distributed Trans

Local Data Accesses = 20
Local Data Accesses = 30
Local Data Accesses = 40

Figure ��� E�ect of Change in Number of Local Data Accesses

Therefore� if the number of local data accesses is large then it is not bene�cial to have all

local transactions�

Figure �	 shows the e�ect of change in number of data accesses for the sub transaction of

a distributed transaction� while keeping the number of data accesses for a local transaction

constant� The number of data accesses for local transactions was kept �xed at �
 per

transaction� while the number data accesses for a sub transaction of a distributed transaction

was varied from � to ��� At small values number of data accesses for local sub transaction

of a distributed transaction it is bene�cial to have all local transactions executing to get

least average transaction response time� but as the number of data accesses for the local

sub transaction of a distributed transaction increase� the lock contention between local

transaction and the local sub transaction of the distributed transaction increases� which

increases the average response time of local transactions� Note that when a local transaction

has lock contention with a sub transaction of a distributed transaction� the local transaction

has to wait till the distributed transaction commits or aborts� From the Figure �	 it is seen

that �
 of local transactions give the least average transaction response time� This is

���



2.5

3

3.5

4

4.5

5

5.5

6

10 20 30 40 50 60 70 80 90

A
v
g
 
T
r
a
n
s
 
R
e
s
p
 
T
i
m
e

Percentage of Distributed Trans

Distributed Data Accesses = 5
Distributed Data Accesses = 10
Distributed Data Accesses = 15

Figure ��� E�ect of Change in Number of Distributed Data Accesses

because reducing the percentage of local transactions reduces the contention with sub�

transactions of the distributed transactions� Thus if the number of data accesses for a sub

transaction of a distributed transaction is large then it is bene�cial to reduce the percentage

of local transactions so as to get least average transaction response time�

��� Summary

In this chapter	 an event�based simulation model to estimate the average transaction re�

sponse time in a distributed database environment was presented� This simulation model

is based on a model of locking mechanism which has been widely accepted for modeling

data contention between transactions� The data contention has been modeled analytically

by calculating the probability of data contention using an analytical formulae� The cyclic

interaction between the probability of contention and the transaction response time has

been captured in the simulation model� The e�ect of changes in data access time	 commu�

nication delay	 arrival rate of transactions	 and number of data accesses has been presented�

A comprehensive set of simulations were done to generate optimal percentage of distributed

transactions for a range of data access time and communication delay� It was shown that


��



for a large range of communication delay and data access time it is bene�cial to have some

percentage of distributed transactions� Thus the tradeo� between amount of time spent on

data access and communication delay has been studied� The e�ect of percentage of local

transactions on the lock contention was presented� with the conclusion that if the num�

ber of data accesses for local transactions or sub transactions of distributed transactions is

large then it is bene�cial to reduce the percentage of local transactions� This is the �rst

simulation study that was done by considering a range of changes like communication de�

lay� data access time� arrival rate� and number of data accesses for a distributed database

environment�

��	



CHAPTER �

A DISTRIBUTED DATABASE REDESIGN METHODOLOGY

��� General Comments

In the previous chapters� a methodology for the design of a distributed database� algo�

rithms to e�ciently materialize redesigned distributed databases� and a simulation model

to measure the average transaction response time for an application executing on a given

distributed database design have been developed� In this chapter an integrated methodology

for distributed database redesign process in an application processing center environment

is presented� In such an environment a set of well de�ned applications are executed over

time� Some applications are executed all the time �perpetual applications� and others are

executed during some intervals of time �non�perpetual applications�� Therefore� it is these

non�perpetual applications that motivate the need for a redesign methodology� This is be�

cause no single distributed database design can be optimal for all applications when some

non�perpetual applications are executed over di�erent intervals of time� It is necessary to

consider a possible change in design whenever a non�perpetual application is initiated for ex�

ecution� This is done to ensure e�cient execution for all the applications in the distributed

database environment�

In this chapter� a model for application processing center scenario is presented� the

viability of this approach is explored� and �nally a small example illustrating the technique

used is presented�

��� A Model for the Application Processing Center Scenario

Given A�� A�� � � � � An
� where each Ai consists of a class of applications and each application

class is de�ned by a set of transactions initiated by all the applications in that class� A

transaction accesses one or more relations of the distributed database� These classes of

applications have included in them all the perpetual applications� The main characteristic of

this application processing center scenario is that at some pre�speci�ed time points �known

	
�



as change points� a class of applications is initiated and the time duration of its execution

known� Given that a class of applications is being executed currently� then the new class of

applications to be executed at the next change point can be one of the classes of applications�

At each change point there is a probability of selecting a class of applications to be initiated�

Each class of applications is executed on a single distributed database design� There are

a set of candidate distributed database designs from which one is selected for a class of

applications to run on� This dynamic process of selecting� initiating� and executing the

class of applications at the change points on a distributed database design can be modeled

as a discrete Markov process�

A stochastic matrix P � �pij � gives the probability of changing from executing class

of applications Ai before a change point to executing class of applications Aj after the

change point� where � � i� j � n� After each change point� a new class of applications can

be executed on any one of the alternative candidate distributed database designs� Each

alternative distributed database design has a cost value for it to be selected� This cost

corresponds to the cost of executing the class of applications on the distributed database

design plus the cost of materializing the new design� The objective is to minimize the cost

of processing all the applications in the distributed database environment�

Therefore� the problem to e	ciently process all the classes of applications in an appli


cation processing center environment can be speci�ed as�

�Given a series of change points and the probabilities of change in processing classes of

applications over the time period in an application processing center scenario� generate the

optimal series of distributed database designs that need to be used for the duration of the

time interval between successive change points��

This problem can be solved by using the Markovian decision analysis proposed by

Howard �How�� in his thesis� The states of the Markov process are s�� s�� s�� � � � � sn�d�

where d is the number of distributed database designs on which the classes of applications

can be executed� Each state represents a class of applications executing on a distributed

database design and is speci�ed by a pair identifying the class of applications and the dis


tributed database design on which it is executed� As there are n classes of applications and

d designs� the number of states in the discrete Markov process is N � n � d� Note that a

class of applications can be executed on only one out of the d possible distributed database

designs� Also note that there are n possible classes of applications that can be executed

after a change point� That is� after a change point� for each of the n possible classes of

��



applications to be executed next� we can evaluate the cost of using each of the d distributed

database designs�

Given that the current state of the application processing center scenario has class of

applications Ai executing on design Dj � then the following alternative state transitions can

occur� Each alternative is described by the following redesign policy�

Table �� A Redesign Policy

If the Application Ai changes to

Application A� Then use Design Di�

Application A� Then use Design Di�

Application A� Then use Design Di�

� �
� �
� �

Application An Then use Design Din

Note that each of the Dik where � � ik � n range over all possible distributed database

designs� Hence there will be dn possible alternatives� The problem then can be restated as

that of selecting the best possible policy among the dn policies for each state of the discrete

Markov process to e�ciently process all classes of the applications� In order to do� this a

column policy vector O with N elements� each of whose element is a particular policy o for

each state of the Markov process is de�ned� The algorithm to generate the optimal redesign

policy starts with an initial redesign policy vector and uses Howard	s value iteration and

policy iteration algorithms to iteratively generate the optimal policy vector� This optimal

policy vector is used by the distributed database administrators to select the distributed

database design to be used after each change point�

Figure 
� shows the discrete Markov process representing the processing of classes of

applications in the application processing center scenario� At the �rst change point class

of applications� Ai is executed on distributed database design Dr� at the next change point

class of applications� Aj is executed on distributed database design Ds� and so on� Note that

in this Markov process there is no change in distributed database design being used after

the third change point� and same class of applications are executed after the �fth change

point but on a di�erent distributed database design� Also shown in Figure 
� is a redesign

policy for the state de�ned by Ai� Dj�� This redesign policy states� that if after the change

point� that class of applications A� is to be executed� then use distributed database design

���



Change Point

urtssr

miikji

DDDDDD

AAAAAA

Discrete Markov Process

Legend:
A - Application
D - Design

- State of Markov Process

1

2

n

Redesign Policy for 

jDiAthe State 

A i D j

iA D
1

iA D
2

in
A D

Figure ��� Discrete Markov Process and Redesign Policy

Di�
� else if A� is to be executed� then use distributed database design Di�

� � � � � and� if An

is to be executed� then use distributed database design Din �

The detailed algorithms to generate the optimal policy vector are given in �How�	
 and

are not presented here� In order to use this technique in practical business data processing

environment� following aspects of the problem need to addressed�

� How are the classes of applications de�ned�

� How are the change points and execution durations generated�

� How is the stochastic matrix P generated�

� How are the candidate distributed database designs generated�

��



� How are the cost values to generate the optimal policy vector calculated�

� Finally� how is the optimal redesign policy generated�

��� Application Classes

In any business data processing environment using an application processing center concept

based on a distributed database environment� an application consists of any of the following�

� A large integrated module of applications that support wide variety of functions�

These applications are typically on�line transaction processing applications based on

a set of menus� In case of such large applications either the complete application

with all its sub�modules is executed as a class of applications� Or� if there are large

number of modules in the application then the modules can be grouped according to

their frequency of execution into di�erent classes of applications� A report generating

module which is executed once a week can can be treated as a class of applications

with only one application� The best way to classify such large applications is based

on whether the application is executed as a whole or whether it is broken up into

classes of applications each of which is executed as a whole application� Bank�teller

machine application consists of a sieve of applications which are executed as a single

large application� But the admission information system of an university� consists of a

set of applications which can be rede�ned as classes of applications like 	registration

package
� 	grade reporting package
� 	class scheduling package
� etc�� such that each

package is executed as a whole at some pre�speci�ed time points of the year�

� The next kind of applications are the large batch applications which are executed at

some pre�speci�ed times� These batch jobs process large volumes of data and gen�

erate reports� or update the database relations� All business data processing centers

run batch jobs periodically� typical examples are payroll processing� insurance claim

processing� daily bank account updates� etc� Just like large on�line applications� the

batch applications are well de�ned and well tested applications� Batch applications

take up lot of resources and usually take long times to execute� Hence it is impor�

tant to e�ciently execute the batch jobs� A single batch job initiates large number

of transactions during its execution time� These transactions are well de�ned and

are characterized into a number of transaction types� Each transaction type of the

��



batch application de�nes an application of the class of applications� If more than one

batch job is initiated at the same time� then they can be grouped to form a class of

applications�

� There are small scale applications which are developed based on some business need�

and are executed over some periods of time� If these kind of applications access large

amount of resources in the distributed database environment or if their performance

is very crucial then they can be de�ned as a class of applications� Also� ad hoc queries

or transactions which are executed periodically or at some pre�speci�ed time points

can also be grouped as class of applications�

A well de�ned set of transactions in the distributed database environment which takes up

a large amount of resources� and needs to be executed e�ciently at di�erent intervals of time

can be grouped as a class of applications for the purposes of the above redesign methodology�

Most database management systems supply utilities to collect and report data regarding

resource consumption by the transactions� frequency of their initiation� the relations they

access� etc� This information can be used by the distributed database administrators to

de�ne the above classes of applications�

����� Change points and Execution Duration

In any production business data processing environments� a set of well de�ned applications

are executed according to a well de�ned schedule� This schedule is governed by the require�

ments for processing of the data by various business policies� There are some periods of

time when some classes of applications are executed� and other periods of time when they

are not executed� Each initiation of the application is treated as a change point because the

distributed database system has to e�ciently process the new set of transactions in addition

to those it is already processing� Similarly� termination of the execution of an application is

considered as a change point� The duration between the application initiation and applica�

tion termination is the execution duration for the application� This schedule gives the time

points when the applications are initiated� Since not all applications are executed all the

time� there is a duration for each initiation of the applications execution time� The duration

for each initiation of the application can be tabulated and averages calculated� The dis�

tributed database administrators can collect this information by monitoring the processing

of the applications�

�	




Large on�line or batch applications tend to have longer execution durations than small

applications or transactions� Hence the distributed database administrators have to evalu�

ate all the applications based on execution duration� resources consumed� and importance

to business processing� This evaluation helps in short listing and de�ning classes of applica�

tions� change points and execution durations for these applications� As pointed out earlier�

most of this information can be collected by monitoring the applications being processed

and from the statistics collected by the database management systems�

����� Calculating the Probability of Change

The dynamic process of initiating and executing the applications in the application pro�

cessing center scenario is modeled as a discrete Markov process� In order to de�ne this

Markov process� the probability of change in the class of applications to be executed from

�before the change point� to �after the change point� needs to be calculated� The stochastic

matrix P gives the probabilities of changing from processing one application to processing

any other application after a change point� The previous section shows how the distributed

database administrators de�ne a set of classes of applications which need to be e�ciently

executed� Following are some of the ways in which the distributed database administrators

can calculate the probabilities in the stochastic matrix�

Uniformity� Treat all the classes of applications to be of the same importance� and any

application can be initiated at each check point� Then pij 	 
�n for all� 
 � i� j � n�

This case will arise when there are too many applications and applications are initiated and

executed randomly�

Schedule� In this case� the initiation of classes of applications follows a schedule strictly

and it is known exactly which class of application is initiated after a change point� If after

the termination of a class of application Ai� the class of applications Aj is always initiated�

then pij 	 
�

Empirical� The relative frequencies of classes of applications initiated after the termination

of a class of application is used to calculate the probability of change� This is an empirical

approach because it is based on monitoring the application processing and collecting the

statistics� The processing of these classes of applications is monitored and the frequency of

executing each class of applications is calculated�

In an application processing center scenario� any one of the above methods or a combi�

nation of the methods based on the statistics collected can be used�


�




��� Generation of Candidate Distributed Database Designs

In order to apply the technique of Markov decision analysis to generate the optimal pol�

icy vector� a set of candidate optimal distributed database designs based on application

processing characteristics need to be generated� The classes of applications are well de�

�ned� Therefore� the transactions initiated� the frequencies with which they are initiated�

the columns accessed� the predicates used to access the tuples of the relations� the average

length of a tuple of a relation� and the cardinality of the relation are known in advance�

In chapters � and � a mixed fragmentation methodology was developed� This methodology

generates a fragmentation and allocation scheme based on the characteristics of the trans�

actions and the sites from which they are initiated� Each class of applications initiates a

set of transactions� each with some frequency from a site� This information� along with the

information about columns and tuples of the relations accessed by each of the transactions

is su�cient to design a distributed database� Each class of applications imposes di	erent

constraints on the distributed database design
 therefore no single distributed database de�

sign can e�ciently process all classes of applications� That is� it is very much possible that

the optimal distributed database design for all classes of applications is outperformed by

an optimal design for a class of applications�

The mixed fragmentation methodology generates the optimal distributed database de�

sign for each class of applications� This optimal design e�ciently processes the class of

applications� but may give a very bad performance for a di	erent class of applications� thus

requiring a redesign� The materialization of redesign is costly and frequent redesign of the

distributed database is not cost e	ective� Therefore� a sub�optimal design which processes

both the classes of applications with acceptable performance and eliminates frequent re�

design will be cost e	ective in the long run� Thus� in addition to the optimal designs for

each of the classes of application additional optimal designs for some subsets of classes

of applications need to be generated� The stochastic matrix P giving the probabilities of

change in the class of applications can be used to decide which subsets of classes of applica�

tions need to be considered for generating the candidate distributed database designs� The

three techniques to calculate the probabilities ��uniformity� �schedule� and �empirical�

described earlier need to considered to generate the candidate distributed database designs�

Uniformity� In this case every class of applications has same probability of being ini�

tiated at a change point� Therefore� in addition to optimal distributed database designs

���



for each class of applications� we can consider optimal distributed database designs for a

combination of each subset of classes of applications� Hence if there are n classes of ap�

plications� then the number of candidate distributed database designs is �n� The number

of candidate distributed database designs possible grows exponentially with the number

of classes of applications� Among all these possible candidate distributed database de�

signs a maximum of n � N designs will be used� This is because each policy vector can

use maximum of N di�erent distributed database designs and there are N policy vectors�

Therefore� once the optimal policy vector is generated� then all but maximum of n � N

candidate distributed database designs can be eliminated� But generating all possible can�

didate distributed database designs will allow the Markov decision analysis to select those

which process all the classes of the applications e�ciently in the long run� In some cases�

it is clear from the application processing scenario that some combinations of the classes of

applications need not considered to generate candidate distributed database design�

Schedule� The schedule de�nes which class of applications is initiated after a change point�

Hence there is a series of di�erent classes of applications being initiated and executed

over successive change points� Because of the execution durations between consecutive

change points� the class of applications being executed are related to the next class of

applications executed most than any other class of applications� Two or three consecutive

classes of applications executed are combined to generate the candidate distributed database

designs� The generation of the candidate distributed database designs is more focused than

the equality case and many of the �n possible candidate distributed database designs are

eliminated�

Empirical� The priority case speci�es which subset of classes of applications that can

be initiated after a change point� The classes of applications initiated over number of

consecutive change points forms a tree rooted at the class of applications �rst initiated�

The successive two or three classes of applications initiated from each possible branch of

the tree generate the possible candidate distributed database designs� Again� this approach

eliminates right away large number of �n possible candidate distributed database designs�

Note that this case falls between the above two cases�

In general� the number of candidate distributed database designs depends on the vari�

ation in the data accessed by the classes of applications� If there is a large amount of

variation� then a distributed database design for one class of applications will provide bad

performance compared to another class of applications� But if there is a very little variation

	





then a single distributed database design will provide reasonable performance to most of

the classes of applications� We will illustrate this with an actual case study in Chapter ��

The above set of approaches based on the characteristics of the discrete Markov process

generate the set of possible candidate distributed database designs� These set of candidate

distributed database designs are evaluated while generating the optimal policy vectors by

using the Markovian decision analysis� The distributed database designs that are most

e�cient to maintain� reorganize and e�ciently process all the applications are used and the

rest are eliminated�

��� Calculating the Cost Values

There are two types of cost values that need to be calculated for being used in the algorithms

to generate the optimal policy vectors� The �rst type of cost value is the cost of materializing

redesigned distributed databases� The second type of cost value is the cost of using a

candidate distributed database design for processing a given class of applications� These

cost values are calculated by using the algorithms and techniques developed in chapters �

and �� A synopsis of these approaches is given below�

Materialization Cost� Given the lengths of the columns of each of the relations� and

the cardinalities of each of the horizontal fragments the time taken to materialize the new

design is given by equation �� This time taken to materialize the populated distributed

database is the cost for materialization� The equation � takes into consideration only the

data transfer and data access costs but not the CPU costs and queuing delay cost� These

costs are assumed to be negligible in comparison to the data transfer and data access costs�

Let CM denote the cost of materialization�

Transaction Processing Cost� The class of applications are executed on a distributed

database design based on a distributed database environment� In chapter � a simulation

model is presented to estimate the average transaction response time based on the fre	

quency of transactions initiated� the number of transactions initiated� the fragmentation

and allocation schemes� and the system parameters 
like data access time� communication

delay and MIPS of the CPU�� The average number of transactions initiated by a class of

applications and their frequencies is calculated by monitoring the applications processed

and collecting the statistics� Since the applications to be processed and the application

processing center are well de�ned� it is easy to develop utilities to collect these statistics�

��



The database management system provides tools that calculate the number of transactions

initiated from a given site and the times when these transactions were initiated� Therefore

based on the average transaction response time r and average number of transactions l

initiated� the transaction processing cost t in seconds is given as�

t �
CM

l
� r ���	

Note that the simulation model used to estimate the average transaction response time

takes into consideration the e
ect of concurrently executing the transactions�

The objective is to minimize the total time taken to execute all the classes of applications

in an application processing center based on a distributed database environment� This total

time takes into consideration the materialization of redesign cost whenever there is a change

in redesign and the time taken to process all the transactions initiated by the applications�

An approach to achieving this is by using the Markov decision analysis�

��� Optimal Policy Vector Generation

The optimal policy vector generation is based on the Markovian decision analysis technique

developed by Howard �How�� in his PhD thesis� The algorithms for generating these

optimal policy vectors are well known� Here a brief description of the technique along

with an example is presented� A more detailed example going through all phases of the

distributed database redesign methodology is presented in the next chapter� In this section

we shall show how the redesign problem can be modeled as a Markovian decision analysis

problem�

����� Modeling of Redesign Problem

Given n classes of applications A�� A�� � � � � An that need to be processed in the application

processing center environment� These applications can be executed on any one of the d

candidate distributed database designs� Let P � �pij� be the stochastic matrix giving the

probability of executing class of applications Aj after completing the execution of class of

applications Ai� C � �cij � be the cost matrix giving the time taken to materialize design dj

from the di� R � �rij � is the matrix giving the time taken to execute the class of applications

Ai on design dj � Note that P is a matrix of order n� n� C is a matrix of order d� d� and

R is a matrix of order n � d�

���



The state of the discrete Markov process is the pair de�ned by �application� design used

by the application�� Therefore� there are n � d states in the discrete Markov process� The

state transition probabilities are de�ned by the policy vector being used by the application

processing center� A policy vector is a column vector with n � d elements� one for each

state of the Markov process� Each element of the policy vector de�nes the policy that needs

to be used� The policy gives which design needs to be used after a change point from the

current state�

Let us consider an example with � applications and � distributed database designs� Let

the stochastic matrix P giving the probability of change

P �

�
����

	�
 	�	 	��

	�� 	�
 	�	

	�	 	�� 	�


�
����

If the current class of applications being executed is A�� then after the change point� with

a probability of 	�
 the class of applications A� continue to be executed� and with probability

	�� the class of application A� will be executed� Similarly the class of applications A�

continue to be executed with probability 	�
� and change with probability 	�� to the class of

applications A�� And the class of applications A� continue to be executed with probability

	�
� and change with probability 	�� to the class of applications A��

The matrix C gives the cost of changing from one distributed database design to another�

C �

�
����

	�	 ���	 ��	�	

��	�	 	�	 ���	

���	 ��	�	 	�	

�
����

If there is no change in distributed database design to be used after a change point then

it has zero cost� The cost materializing distributed database design D� from D�� D� from

D�� and D� from D� are all � seconds
�� And the cost of materializing distributed database

design D� from D�� D� from D�� and D� from D� are all �	 seconds�

The matrix R gives the cost of executing a class of applications on a distributed database

design�

�Since the Markov Decision Analysis maximizes bene�t values� and the goal of redesign policy is to

minimize cost� we represent cost values as negative bene�t

���



R �

�
����

����� ����� �����

����� ����� �����

����� ����� �����

�
����

The cost of executing class of applications A� on distributed database design D� is the

cheapest at �� seconds� and on other designs it takes �� seconds� Similarly� the costs of

executing A� on D�� and A� on D� is �� seconds� and on all other distributed database

designs it is �� seconds� For these three classes of applications� the following observations

can be made�

� The probability of a class of application to continue executing after a change point is

four times the probability that there will be a change in class of applications to be

executed� This implies that on an average a class of applications can be expected to

be executed over four change points� Moreover� there is a well de�ned schedule for

the change� which is A� �� A� �� A� �� A��

� Each distributed database design executes a single class of applications optimally� The

class of applications A� are e	ciently executed by distributed database design D�� A�

by D�� and A� by D�� Therefore� it is preferred to execute a class of applications on

the distributed database design that best executes it�

� The materialization of redesign cost is the cheapest along the schedule� That is� cost

of materializing D� from D� is cheaper than D� from D�� cost of materializing D�

from D� is cheaper than D� from D�� cost of materializing D� from D� is cheaper

than D� from D�� Therefore� these costs encourage the redesign in order to bene�t

the schedule of the execution of classes of applications� Also the cost of any change in

distributed database design just prior to executing a class of applications is amortized

over four change points on an average�

The cost values used in the example are taken so as to emphasize the technique being

used� In chapter 
 the example will use cost values based on the case study undertaken� In

the next section a formalization of the technique will be presented�

The Markovian decision analysis process consists of two phases value�determination

process and the policy improvement process� The process starts by considering an initial

���



Table �� Redesign Policies for � Applications and � Designs

Policy Number Policy

� �A� � D��� �A�� D��� �A�� D��
� �A� � D��� �A�� D��� �A�� D��
� �A� � D��� �A�� D��� �A�� D��
	 �A� � D��� �A�� D��� �A�� D��

 �A� � D��� �A�� D��� �A�� D��
� �A� � D��� �A�� D��� �A�� D��
� �A� � D��� �A�� D��� �A�� D��
 �A� � D��� �A�� D��� �A�� D��
� �A� � D��� �A�� D��� �A�� D��
�� �A� � D��� �A�� D��� �A�� D��
�� �A� � D��� �A�� D��� �A�� D��
�� �A� � D��� �A�� D��� �A�� D��
�� �A� � D��� �A�� D��� �A�� D��
�	 �A� � D��� �A�� D��� �A�� D��
�
 �A� � D��� �A�� D��� �A�� D��
�� �A� � D��� �A�� D��� �A�� D��
�� �A� � D��� �A�� D��� �A�� D��
� �A� � D��� �A�� D��� �A�� D��
�� �A� � D��� �A�� D��� �A�� D��
�� �A� � D��� �A�� D��� �A�� D��
�� �A� � D��� �A�� D��� �A�� D��
�� �A� � D��� �A�� D��� �A�� D��
�� �A� � D��� �A�� D��� �A�� D��
�	 �A� � D��� �A�� D��� �A�� D��
�
 �A� � D��� �A�� D��� �A�� D��
�� �A� � D��� �A�� D��� �A�� D��
�� �A� � D��� �A�� D��� �A�� D��

policy vector� determining the values� and evaluating if the policy could be improved further�

This iteration between value�determination and policy improvement ends when in successive

iterations there is no change in the policy vector�

A policy vector de�nes the Markov decision process that needs to be used by the ap�

plication processing center to process all its classes of applications� In case of the example

de�ned in the previous section� we have � states and �� policies� The policy vector de�nes

policy adopted by each of the states� Table � lists all the policies for this example� Each

��



policy� say for example� �A� � D��� �A� � D��� �A� � D�� �i�e� policy number ��� means

that if the new class of applications to be executed is A� then use design D�� if it is A� then

use design D�� if it is A� then use design D��

Howard	s algorithms use the input provided by the matrices P � C� and R� to generate the

optimal policy vector after 
ve iterations� This process of optimal policy vector generation

can be described as follows�

It� It�� It�� It�� It�� It��

g � ������ g � ������ g � ������ g � ���� g � ����

�� �� �� �� �� �

�� �� �� �� �� �

�� �� �� ��� �� �

�� �� �� �� �� �

�� �� �� �� �� �

�� �� �� ��� �� �

�� �� �� �� �� �

�� �� �� �� �� �

�� �� �� �� �� �

The It� denotes the iteration number and g denotes the gain value� The iteration

converges to an optimal policy vector with a gain value of ���� The optimal policy vector

is�

P �

�
���������������������

�

�

�

�

�

�

�

�

�

�
���������������������

The discrete Markov process de
ned by this policy vector is illustrated in Figure ���

This Markov process swiftly converges to the process de
ned by �A�� D�� � �A�� D�� �

���



0.2

0.2

0.2

0.2

0.2 0.20.2

0.2

0.8

0.8

0.8

0.80.8

0.8

0.8

0.8
0.8

)

3

3

3

)))

))

)))

2

2

2

1

1

1

DDD

DDD

DDD

,,,

,,,

,

333

22
2

11,,

(((

(((

((

A

A

A

A

A

A

AA
1(A

Figure ��� Discrete Markov Process De�ned by the Optimal Policy Vector

�A�� D�� � �A�� D��� This means that the application processing center environment al	

ways needs to use design D� when processing applications A�
 design D� when processing

applications A�
 and design D� when processing applications A�� Therefore
 whenever there

is a change in applications that need to be executed there is a change in design� For this

example with these cost values
 it is bene�cial to change the distributed database design

when ever there is a change applications to be processed�

��



��� Summary

In this chapter an approach to generate an optimal redesign policy so as to execute all

the applications e�ciently in an application processing center environment based on a dis�

tributed relational database system has been presented� This integrated approach takes as

input the three matrices� probability of change in classes of applications to be processed

�P �� the matrix giving the cost of redesign �C�� and the matrix giving the cost of using

a distributed database design for a class of applications �R�� and generates as its output

an optimal policy vector that dictates the policy to be adopted for each change in class of

applications to be processed�

Some guidelines have been developed to de	ne the classes of applications� the calcula�

tion of probabilities of change� identifying the change points and execution durations� and

generating the set of candidate distributed database designs� These guidelines have been

developed so that they can be enforced by analyzing the statistics collected by monitoring

the applications being processed and
or using the statistics collected by the distributed

database system� The business policies inherent in business data processing are also taken

into consideration while de	ning the classes of applications and deriving the probabilities

of change� These guidelines are intuitive in nature and have not been formally de	ned or

veri	ed� This has been left for the future work�

Finally� in this chapter an example with � applications and � designs is considered and

an optimal policy vector is generated� The policy is to use the most optimal design for that

class of applications when executing it� In the Appendix B the details of this approach are

given�

��



CHAPTER �

MARKETING AND RECRUITING SYSTEM� A CASE STUDY

��� General Comments

This case study is undertaken to illustrate the distributed database design�redesign method�

ology proposed in the previous chapters� The O�ce of Information Technology at Georgia

Tech has been developing a student and �nancial information system based on a relational

database system� There is a plan to �connect� the data from a variety of sources into a sin�

gle distributed database system environment� The proposed design would help in deciding

how to fragment and allocate existing relations� The marketing and recruiting system is a

module of this information system and consists of a set of applications� The applications

de�ned in this case study are conceptualized from this marketing and recruiting system�

This system is used by Georgia Tech personnel to recruit quality students to their under�

graduate and graduate programs� These personnel are henceforth known as Recruiters	 and

the students being recruited are known as Prospects� There are di
erent events held at

di
erent places by the institute during the calendar year to inform the prospects about the

institute and recruit them�

��� Distributed Database Environment

There are �ve nodes in the distributed database environment� Each node has a computer	

and a distributed relational database management system� The nodes are College of Com�

puting �CoC�	 College of Engineering �CoE�	 College of Management �CoM�	 College of

Science �CoS�	 and the Central Administrative Building �CAB�� Each of these colleges have

Recruiters and maintain the information about the Prospects� All the �ve nodes are fully

connected by a campus wide LAN� All the �ve nodes have the same computer	 with same

MIPS rating	 Disk I�O time	 and the DBMS� This environment with a set of applications

accessing the relations de�nes the application processing center scenario�

��



��� Database Relations and Application

The following set of relations �shown in Tables ��� ��� ��� and ��� are used to store data

about Prospects� Recruiters� Events� and relationships among them	 These relations are

subject to fragmentation and allocation based on the transaction characteristics of the ap


plications accessing the relations	 The relation ProsRecr stores data about the relationship

between Recruiters and Prospects	 The columns of these relations are self explanatory	 The

sizes of the columns are also given	 There is a brief comment about the data items stored

in the columns	

Table ��� Relation Recruiters

Column No Column Name Size Comment

c� Recr�id Char�� Unique Identi�er
c� Recr�type Char��� Type
c� Recr�name Char���� Name
c� Recr�add Char��	�� Address
c	 Recr�major Char�
�� Major for which the Prospects are recruited
c� Recr�college Char���� College the recruiter represents
c� Recr�comments Char�
���� Any comments about the Recruiter
c Recr�date Char�
�� Date on which Recruiter started recruiting

Here is the list of perpetual applications which are executed on the above set of relations�

These applications are on�line applications that are executed between AM and �PM�

P
� Access Recruiter Information�

P�� Access Prospect Information�

P�� Access Event Calendar�

Here is the list of non�perpetual applications executed on the above set of relations� The

applications NP
�NP� are on�line applications� and the applications NP��NP
� are batch

applications�


��



Table ��� Relation Prospects

Column No Column Name Size Comment

c� Pros�id Char��� Unique Identi�er
c�	 Pros�type Char�
� Type �ug� or �grad�
c�� Pros�name Char�
	� Name
c� Pros�sex Char��� Sex
c�� Pros�ms Char��� Marital Status
c�
 Pros�state Char�� State of Residency
c�� Pros�add Char��	� Address
c�� Pros�place Char��	� Place of residence
c�� Pros�dob Char��	� Date of Birth
c�� Pros�resi Integer Residency achieved �ag
c�� Pros�app�id Char��� Application Identi�er
c	 Pros�term�yr char��	� Term and Year applied for
c� Pros�college Char��	� College the prospect is interested in
c Pros�gpa Float Cumulative GPA
c� Pros�sat�verb Integer SAT Verbal score
c
 Pros�sat�quan Integer SAT Quantitative score
c� Pros�sat�anal Integer SAT Analytical score
c� Pros�gre�verb Integer GRE Verbal score
c� Pros�gre�quan Integer GRE Quantitative score
c� Pros�gre�anal Integer GRE Analytical score
c� Pros�gmat Integer GMAT score
c�	 Pros�toe� Integer TOEFL score
c�� Pros�international Char��� Whether out of country

NP�� Match Recruiters to the Prospects �Tuesday and Thursday� PM to 
PM��

NP� List Prospects to whom Information Packets need to be sent �Monday� Wednesday�

and Friday �AM to �	AM��

NP�� Maintain Prospect Information� that is� to update the prospect information� delete

or insert prospects� �Every Day PM to �PM��

NP
� Maintain Recruiter Information� that is� to update the recruiter information� delete

or insert recruiters �Every Day PM to �PM��

NP�� List Prospects to whom Birthday Greeting Card has to be sent �Everyday �AM to

�





Table ��� Relation Events

Column No Column Name Size Comment

c�� Event�id Char��	 Unique Identi
er
c�� Event�name Char���	 Name
c�� Event�type Integer Type
c� Event�place Char���	 Place held
c�� Event�state Char��	 State of Place
c�� Event�st�date Char���	 Start Date
c�� Event�end�date Char���	 End Date
c�� Event�max�recr Integer Maximum number of recruiters
c�� Event�max�pros Integer Maximum number of prospects

Table ��� Relation ProsRecr

Column No Column Name Size Comment

c�� Pros�id Char��	
c�� Recr�id Char��	
c�� Adv�st�date Char���	 Start date of advising
c�� Adv�fn�date Char���	 Last date of advising
c� Num�recr Integer Number of recruiter

��AM	�

NP�� Schedule Events for Prospects and Recruiters �Every Day �� AM to �� PM	�

NP�� Insert or Update SAT scores �Monday� Wednesday� and Friday PM to �PM	�

NP�� Insert or Update GRE scores �Monday� Wednesday� and Friday PM to �PM	�

NP�� Insert or Update TOEFL scores �Monday� Wednesday� and Friday PM to �PM	�

NP��� Insert or Update GMAT scores �Monday� Wednesday� and Friday PM to �PM	�

NP��� Evaluate all the Prospects �Tuesday and Thursday PM to �PM	�

NP��� Evaluate all the Recruiters �Tuesday and Thursday PM to �PM	�

��



The SELECT statements de�ning the tuples and columns accessed by each of the trans�

actions initiated by above applications are given in the Appendix C� There are a total of

�� transactions �T��T	
� which are initiated from the �ve sites of the distributed database

environment�

����� De�ning Classes of Applications

The information about the applications� and the SQL statements initiated by these applica�

tions� along with times when these applications are initiated are used to generate the classes

of applications� Table � lists the applications executed and the transactions� initiated by

these applications during each hour of the day�

Table �� Schedule for Applications and Transactions Executed During the Day

Time Applications Executed Transactions Initiated


AM � �AM P�� P�� P�� NP�� NP� T��T��� T��� T��
�AM � ��AM P�� P�� P�� NP�� NP� T��T��� T��� T��
��AM � ��AM P�� P�� P�� NP	 T��T��� T��
��AM � ��AM P�� P�� P�� NP	 T��T��� T��
��AM � �PM P�� P�� P� T��T��
�PM � �PM P�� P�� P� T��T��
�PM � �PM NP�� NP�� NP T�	�T�
� T��T�
�PM � PM NP�� NP�� NP T�	�T�
� T��T�
PM � �PM NP�� NP T��T�
�PM � 	PM NP��NP�� T���T	

	PM � �PM NP��NP�� T���T	

�PM � 
PM NP��NP�� T���T	


In this case study all the applications are grouped into two classes of on�line applications

and a class of batch applications� The on�line applications are executed from 
AM to �PM�

and the batch applications from �PM to 
PM� The two classes of on�line applications are ���

those that are executed from 
AM to �PM �A��� and ��� those that are executed from �PM

to �PM �A��� This classi�cation of applications was done because the data and processing

requirements of these three classes of applications are di�erent and these applications are

executed at di�erent periods of time� The applications classes are as follows�

�For the descriptions of transactions� see Appendix C

�	



�A��� P�� P�� P�� NP�� NP�� NP	�

�A��� NP�� NP�� NP
�

�A��� NP�� NP�� NP� NP�� � NP��� NP���

At any time of the day one of these classes of applications are executed in the distributed

database environment� The schedule of executing the applications is A� � A� � A� �

A��

����� Transaction and Relation Characteristics

Table �� gives the cardinalities of the relations in the distributed database environment�

Table ��� Cardinalities of the Relations

Relation Cardinality

Recruiters ���
Prospects 
����
Events ���
ProsRecr 
����

Table �	 gives the predicates used to access the relations and the approximate cardinality

of the tuples satisfying the predicates�

Table �� gives the frequency of the transactions� The batch applications generate more

transactions�sec than on�line applications� Also applications which are active throughout

the day initiate fewer transactions�sec than applications which are active for brief intervals

of time� In order to use a standard unit of time interval to calculate frequency� for some

transactions the values of frequency are less than one� As some of these applications are

running concurrently� the total arrival rate of transactions will be the sum of frequencies of

all transactions initiated by these applications� This frequency of transactions will be used

to come up with the distributed database designs�

�
�



Table ��� Selectivity of Predicates in the Relations

Relation Name Predicate Cardinality

Recruiters Recr�type � �ug� �	

Recr�type � �grad� 	


Recr�college � �CoC� �

Recr�college � �CoE� �


Recr�college � �CoS� �

Recr�college � �CoM� �


Prospects Pros�type � �ug� �





Pros�type � �grad� �




Pros�college � �CoC� �




Pros�college � �CoE� ��



Pros�college � �CoS� �




Pros�college � �CoM� �



Pros�state � �GA� 





Pros�gpa � ��

 �	



Pros�gpa � ��	 �



Pros�international � � �




Pros�toe� � �

 �	



Events Event�type � �ug� �

Event�type � �grad� �


Table ��� Transaction Initiation Frequencies

Frequency�sec Transactions


�

	 T��T��

�
	 T���T�	� T���T��


�	 T���T��� T	��T��
��
 T��� T�
� T���T	�

�
 T	�T		

��� Distributed Database Designs

The vertical and horizontal fragmentation algorithms are executed using the transaction

and relation characteristics given in the previous section� The distributed database designs

for each of the relations are presented below�

���



����� Prospects

In order to e�ciently execute the class �A�� of applications the following set of vertical

fragments are generated by the graphical algorithm presented in �NR��	
 By using the graph

theoretic algorithm for generating horizontal fragments presented in Chapter � following

set of horizontal fragments are generated
 This was done by ��� generating the predicate

usage matrix from the transaction characteristics of the applications A�� �� generating the

predicate a�nity matrix from the predicate usage matrix� ��� using the graph theoretic

algorithm to generate the initial horizontal fragments� and ��� use the ADJUST function

to generate non�overlapping horizontal fragments


The vertical fragments are�

�� Pros�id� Pros�name� Pros�sex� Pros�ms� Pros�add� Pros�dob


�� Pros�id� Pros�resi� Pros�app�id� Pros�term�yr


�� Pros�id� Pros�gpa� Pros�sat�verb� Pros�sat�quan� Pros�sat�anal


�� Pros�id� Pros�gpa� Pros�gre�verb� Pros�gre�quan� Pros�gre�anal


�� Pros�id� Pros�gpa� Pros�gmat


�� Pros�id� Pros�type� Pros�college� Pros�state� Pros�place� Pros�toe�� Pros�international


The horizontal fragments are�

a� Pros�type � �ug� and Pros�college � �CoC�


b� Pros�type � �grad� and Pros�college � �CoC�


c� Pros�type � �ug� and Pros�college � �CoS�


d� Pros�type � �grad� and Pros�college � �CoS�


e� Pros�type � �ug� and Pros�college � �CoE�


f� Pros�type � �grad� and Pros�college � �CoE�


g� Pros�type � �ug� and Pros�college � �CoM�


h� Pros�type � �grad� and Pros�college � �CoM�


���



Table ��� Grid Cells of Relation Prospects with Online�Transactions �A���

Vertical Fragments
Horizontal �� �� �� �� �� ��

Fragments

a� T�	
 T���T�� T� T��
T��
 T	��T	�

b� T�	
 T���T�� T� T��
T��
 T	��T	�

c� T��
 T���T�� T�� T��
T��
 T	��T	�

d� T��
 T���T�� T�� T��
T��
 T	��T	�

e� T��
 T���T�� T�� T�	
T��
 T	��T	�

f� T��
 T���T�� T�� T�
T��
 T	��T	�

g� T��
 T���T�� T�� T��
T��
 T	��T	�

h� T��
 T���T�� T�� T��
T��
 T	��T	�

The set of grid cells generated by these horizontal and vertical fragments
 along with

the transactions accessing them is presented in Table ��� The analysis of the multiple grid

cells being accessed by the transactions generates T ��� � ff�
� � ���a�b��� f

�
� � ���c�d��� f

�
� �

���e�f��� f
�
� � ���g�h��f

�
� � ���a�b��� f

�
� � ���c�d��� f

�
	 � ���e�f��� f

�

 � ���g�h��g
 and T �
� �

ff

� � ���a�b�c�d�e�f�g�h�g �refer to Section� �������

The procedures described for grid optimization in Section ��� are used to merge the grid

cells to form mixed fragments� The Grid Optimization�� algorithm is used to generate the

following set of mixed fragments� This was done by ��� calculating the sizes of grid cells

from the lengths of columns of the Recruiters relation
 and the selectivity of the predicates

accessing the tuples
 ��� calculating the number of data accesses required to access the grid

cells and merged fragments
 and ��� comparing these number of data accesses to decide on

whether or not to merge�

Note that the mixed fragments de�ned by grid cells represented by sets f�
� � f

�
� � f

�
� 
 and

f�
� are contained in the mixed fragment de�ned by f


� � Hence there is a need to evaluate

�	�



whether it is bene�cial to have a single mixed fragment de�ned by grid cells in f�
� or four

mixed fragments de�ned by grid cells in sets f�� � f
�
� � f

�
� � and f�

� � This evaluation is done

by using the cost model model presented in section ����� and the evaluation algorithm

Eval contained in�	� presented in Section ������ For simplicity it is assumed that all trans


actions access the grid cells by using the segment scan with a Pre Fetch Blocking Factor as

�� and a page size of �K bytes� The cardinalities of horizontal fragments a� b� c� d� e� f� g� h

are calculated from the Table ��� The lengths of the vertical fragments �� �� �� �� � � are cal


culated from the lengths of the columns of the relation Prospects given in Table ��� Based

on the above data about sizes of grid cells and mixed fragments� the number of disk accesses

to process all the transactions accessing the mixed fragments f�
� � f

�
� � f

�
� � and f�

� is ������

and to process all the transactions accessing the mixed fragment f�
� is ������ therefore it is

bene�cial to break up mixed fragment f�
� to four mixed fragments represented by the sets

of grid cells f�
� � f

�
� � f

�
� � and f�

� � But as the transactions T� and T� which access these

mixed fragments with a high frequency of ����sec are initiated from site CAB� all these

mixed fragments de�ned by f�
� � f

�
� � f

�
� � f

�
� are allocated to site CAB�

Next we evaluated the bene�t of having mixed fragments de�ned by grid cells in sets

f�
� � f

�
� � f

�
� � and f�

� � against a single mixed fragment formed by represented by �	a�b�c�d�e�f�g�h
�

It was found that both of them result in same number of data accesses ����	 to process all

the transactions accessing the grid cells f�a� �b� �c� �d� �e� �f � �g� �hg� In order to increase the

locality of processing for the transactions accessing the grid cells� set of mixed fragments

were formed by merging the grid cells in each of the sets f�
� � f

�
� � f

�
� � and f�

� � The resulting

mixed fragments are allocated to sites CoC� CoS� CoE and CoM respectively�

The vertical fragments �� ��  are accessed at most by one transaction each� There


fore� they were merged to form a mixed fragment represented by grid cells f��	a�b�c�d�e�f�g�h
�

�	a�b�c�d�e�f�g�h
� 	a�b�c�d�e�f�g�h
	g� Otherwise there will be too many fragments for the rela


tion� and it will increase the cost of maintaining the distributed database� The vertical

fragment � which is not accessed by any of the transactions T�
T�� is merged to form a

mixed fragment f��	a�b�c�d�e�f�g�h
	g� These two mixed fragments are allocated to site CAB�

The distributed database design for relation Prospects to execute the class of applications

�A�	 is shown in Table ���

In order to e�ciently process the transactions initiated by class �A�	 of on
line applica


tions� following sets of vertical and horizontal fragments were generated�

��



Table ��� Distributed Database Design for relation Prospects �A��

Application Relation Fragment Id Fragment Name Site

On�Line Prospects p� ���a�b�� CAB
Class A� p� ���c�d�� CAB

p� ���e�f�� CAB
p� ���g�h�� CAB
p� ���a�b�� CoC
p� ���c�d�� CoS
p� ���e�f�� CoE

p	 ���g�h�� CoM
p
 �	�a�b�c�d�e�f�g�h�� 
�a�b�c�d�e�f�g�h� CAB

��a�b�c�d�e�f�g�h��
p�� ���a�b�c�d�e�f�g�h�� CAB

The set of vertical fragments are�

��
� Prosid� Prosname� Prossex� Prosms� Prosadd� Prosstate� Prosresi� Prosapp

id� Prostermyr�

��
� Prosid� Prosgpa� Prossatverb� Prossatquan� Prossatanal�

	�
� Prosid� Prosgpa� Prosgreverb� Prosgrequan� Prosgreanal�


�
� Prosid� Prosgpa� Prosgmat�

��
� Prosid� Prostype� Proscollege� Prosplace� Prosdob� Prostoe�� Prosinternational�

The set of horizontal fragments are the same as those for the class of on�line application

A��

The set of grid cells generated by these horizontal and vertical fragments� along with the

transactions accessing them is presented in Table ���

By executing the Grid Optimization�� algorithm it was found bene�cial to merge grid

cells represented by f��

�a�b�c�d�e�f�g�h�g as a mixed fragment and allocate it to the site CAB� It

was also found bene�cial to merge grid cells represented by f���

�a�b�c�d�e�f�g�h�� 	
�

�a�b�c�d�e�f�g�h��


�

�a�b�c�d�e�f�g�h��g� and f���

�a�b�c�d�e�f�g�h��g as mixed fragments and allocate them to the site

CAB� The distributed database design for relation Prospects to execute the class of on�line

applications �A�� is shown in Table ���

���



Table ��� Grid Cells of Relation Prospects with Online�Transactions �A���

Vertical Fragments
Horizontal 	�

� ��
� 
�

� ��
� ��

�

Fragments

a� T�� T�	
b� T�� T��
c� T�� T�

d� T�� T��
e� T�� T��
f� T�� T�
g� T�� T��
h� T�� T��

Table ��� Distributed Database Design for relation Prospects �A�	

Application Relation Fragment Id Fragment Name Site

On
Line Prospects p
�

�
��

�a�b�c�d�e�f�g� CAB

Class A� p
�

� ���

�a�b�c�d�e�f�g�h�� ��
�

�a�b�c�d�e�f�g�h� CAB

��

�a�b�c�d�e�f�g�h�	

p
�

� ���

�a�b�c�d�e�f�g�h�	 CAB

For the class �A�	 of batch applications the set of vertical and horizontal fragments that

eciently process all the transactions are given below�

The vertical fragments are�

���
� Pros�id� Pros�name� Pros�add�

���
� Pros�id� Pros�sex� Pros�gpa� Pros�sat�verb� Pros�sat�quan� Pros�sat�anal�

���
� Pros�id� Pros�gre�verb� Pros�gre�quan� Pros�gre�anal�

���
� Pros�id� Pros�gmat�

���
� Pros�id� Pros�toe�� Pros�international�

���
� Pros�id� Pros�type� Pros�ms� Pros�state� Pros�place� Pros�dob� Pros�app�id� Pros�

term�yr� Pros�college�

���



The horizontal fragments are the same as that for the classes f �A��� �A��g of on�line

applications� Table �� shows the grid cells and the transactions accessing these grid cells�

Table ��	 Grid Cells of Relation Prospects with Batch Transactions

Vertical Fragments
Horizontal ���

� ���
� 
��

� ���
� ���

� ��
�

Fragments

a� T��� T T�� T�� T��

b� T�
� T� T�a� T�� T��

c� T��� T T��T� T��

d� T�
� T� T�a�T� T��

e� T��� T T�� T� T��

f� T�
� T� T�a� T
 T��

g� T��� T T�� T� T��

h� T�
� T� T�a� T�� T� T��

By executing the Grid Optimization�� algorithm it was found bene�cial to form mixed

fragments ����

�a�c�e�g��� ��
��

�b�d�f�h��� ��
��

�a�b�c�d�e�f�g�h��� The rest of the grid cells were merged

to form mixed fragments ����

�a�b�c�d�e�f�g�h�� 

��

�a�b�c�d�e�f�g�h�� �
��

�a�b�c�d�e�f�g�h��� and ���

�a�b�c�d�e�f�g�h���

Since all the processing on these fragments is initiated from the site CAB� all these fragments

are allocated at the site CAB� The distributed database design for relation Prospects to

execute the class of applications �A
� is shown in Table �
�

Table �
	 Distributed Database Design for relation Prospects �A
�

Application Relation Fragment Id Fragment Name Site

Batch Prospects p
��

� ����

�a�c�e�g�� CAB

p
��

� ����

�b�d�f�h�� CAB

p
��

� ����

�a�b�c�d�e�f�g�h�� CAB

p
��

� ����

�a�b�c�d�e�f�g�h�� 

��

�a�b�c�d�e�f�g�h� CAB

���

�a�b�c�d�e�f�g�h��

p
��

� ���

�a�b�c�d�e�f�g�h�� CAB

���



����� Recruiters

Similarly� for e�ciently executing the class �A�� of on�line applications� the vertical and

horizontal fragmentation algorithms generate the following set of vertical and horizontal

fragments�

�� Recr	id� Recr	name� Recr	add� Recr	type�

�� Recr	id� Recr	major� Recr	college� Recr	comment� Recr	date�

a� Recr	type 
 �ug� and Recr�college 
 �CoC��

b� Recr	type 
 �grad� and Recr�college 
 �CoC��

c� Recr	type 
 �ug� and Recr�college 
 �CoS��

d� Recr	type 
 �grad� and Recr�college 
 �CoS��

e� Recr	type 
 �ug� and Recr�college 
 �CoE��

f� Recr	type 
 �grad� and Recr�college 
 �CoE��

g� Recr	type 
 �ug� and Recr�college 
 �CoM��

h� Recr	type 
 �grad� and Recr�college 
 �CoM��

The set of grid cells generated by these horizontal and vertical fragments along with the

transactions accessing them is presented in the Table ��

Note that none of the transactions T�	T�� access the vertical fragment � The Grid

Optimization�� algorithm is used to generate the following set of mixed fragments� These

mixed fragments are speci�ed by means of the representation scheme as� f� 
 ��a�b�� and f�


 ��c�d�� and f� 
 ��e�f�� and f� 
 ��g�h�� and f� 
 �a�b�c�d�e�f�g�h�� The mixed fragments f��

f�� f�� and f� are respectively located at sites CoC� CoS� CoE� and CoM� And the mixed

fragment f� is located at site CAB� The distributed database design for relation Recruiters

when executing class of on�line applications �A�� is shown in Table ��

For e�ciently executing the class �A� of on�line applications the vertical and horizontal

fragmentation algorithms generate the following set of vertical and horizontal fragments�

The vertical fragments are�

��� Recr	id�Recr	College�

���



Table ��� Grid Cells of Relation Recruiters for Class of Online�Transactions �A��	

Vertical Fragments
Horizontal �� ��

Fragments

a� T�
 T�
 T��

b� T�
 T�
 T��

c� T�
 T�
 T��

d� T�
 T
 T��

e� T�
 T�
 T��

f� T�
 T�
 T��

g� T��
 T��
 T��

h� T��
 T��
 T��

Table ��� Distributed Database Design for relation Recruiters �A��

Application Relation Fragment Id Fragment Name Site

On�Line Recruiters r� ���a�b�� CoC
Class A� r� ���c�d�� CoS

r� ���e�f�� CoE
r� ���g�h�� CoM
r� ���a�b�c�d�e�f�g�h�� CAB

��
� Recr�id
 Recr�type
 Recr�name
 Recr�add
 Recr�major
 Recr�comments
 Recr�date	

The horizontal fragments are�

a
�
� Recr�college � �CoC�	

b
�
� Recr�college � �CoS�	

c
�
� Recr�college � �CoE�	

d
�
� Recr�college � �CoM�	

The set of grid cells generated by this design along with the transactions accessing them is

presented in Table �	

��



Table ��� Grid Cells of Relation Recruiters for Class Online�Transactions �A��	

Vertical Fragments
Horizontal ��

� ��
�

Fragments

a�� T
� �T� T�

b�� T
�a �T� T�

c�� T
� �T� T�

d�� T
� �T� T�

Table ��� Distributed Database Design for relation Recruiters �A��

Application Relation Fragment Id Fragment Name Site

On�Line Class A� Recruiters r�

�
���

�a��b��c��d��� �
�

�a��b��c��d��� CAB

The frequency with which transaction T� is initiated is much higher than transactions T
��

T
�	 Therefore� the Grid Optimization�� algorithm generates a single mixed fragment by

merging all the grid cells	 This mixed fragment represented by r�

� � ���

�a��b��c��d��� �
�

�a��b��c��d���

is allocated at the site CAB	 The distributed database design for relation Recruiters to

execute class of applications �A�� is shown in Table ��	

For e�ciently executing the class �A
� of batch applications the vertical and horizontal

fragmentation algorithms generate the following set of vertical and horizontal fragments	

���� Recr�id� Recr�name� Recr�college� Recr�type	

���� Recr�id� Recr�major� Recr�add� Recr�comment� Recr�date	

The horizontal fragments are the same as that for the class �A�� of on�line applications	

The grid cells and the transactions accessing them for the class �A
� of batch applications

are given Table ��	

Note that none of the transactions T��T�� access the vertical fragment ���	 The Grid

Optimization�� algorithm generated the following set of mixed fragments represented by

f ��

� � ���

�a�c�e�g�� f ��

� � ���

�b�d�f�h�� and f ��

� � ���

�a�b�c�d�e�f�g�h�	 Again in this case also all these

fragments are allocated at site CAB� as the relation Recruiter has small relation size� and

the transactions accessing the relation are all initiated from site CAB	 The distributed

���



Table ��� Grid Cells of Relation Recruiters with Batch�Transactions

Vertical Fragments
Horizontal ���

� ���
�

Fragments

a� T��

b� T��

c� T��

d� T��

e� T��

f� T��

g� T��

h� T��

Table �	� Distributed Database Design for relation Recruiters 
A��

Application Relation Fragment Id Fragment Name Site

Batch Recruiters r
��

�
���

�a�c�e�g� CAB

r
��

� ���

�b�d�f�h� CAB

r
��

� ���

�a�b�c�d�e�f�g�h� CAB

database design for relation Recruiters to execute the class of applications 
A�� is shown in

Table �	

����� Other Relations

The relation Events has a small cardinality and is allocated at site CAB The relation

ProsRecr is accessed by very few transactions from the site CAB Therefore� it was not

bene�cial to fragment relation ProsRecr The relation ProsRecr was allocated to the site

CAB as all the transactions that accessed it were initiated from that site

����� Fragmentation and Allocation Schemes for On�line and Batch Applica�

tions

Figures �	� ��� and �� show the location of the fragments� the transactions initiated from

each of the sites in the distributed database environment� and the optimal distributed

���



10943215

4

3

2

r

r

r

rr

,,

,

,

,

,
,

,,,,,

,

,

,

T50-T51T39
T31-T35

T27-T30
T23-T26

T19-T22T15-T18

T13-T14

T10-T12
T7-T9

T4-T6T1-T3

8
p

7
p

6
p

CoM

CAB

CoE

CoSCoC
1

p
5

p p p p p p

Figure ��� Candidate Distributed Database Design �D�� for On�Line Applications �A��	

,’’’
321

,,

,

,,

,

T40, T49

T47-T48
T45-T46

T43-T44T41-T42

T38
T37

T37aT36

CoM

CAB

CoE

CoSCoC

p p p
1

r’

Figure 
�� Candidate Distributed Database Design �D�� for On�Line Applications �A��	

��



T66-T68

T64-T65
T62-T63

T60-T61T58-T59

T52-T57
’’

4
p’’

3
p’’

2
p’’

1
p’’

3r
’’’’
2r1r

CoM

CAB

CoE

CoSCoC

Figure ��� Candidate Distributed Database Design �D�� for Batch Applications �A���

database design �D�� for the class �A�� of online applications	 optimal distributed database

design �D
� for class �A
� of on�line applications	 and optimal distributed database design

�D�� for class �A�� of batch applications respectively� From these optimal distributed

database designs following points are noted�

� Only for the optimal design �D�� for the class �A�� of on�line applications fragments

are allocated at more than one site�

� There is a change only in fragmentation scheme and not in the allocation scheme

between optimal distributed database designs �D
� and �D��� This is because di�erent

sets of transactions access di�erent columns of the relations� That is	 the vertical

fragmentation scheme changes	 but the allocation scheme does not change�

� All the fragments of the optimal distributed database designs �D
� and �D�� are

allocated at site CAB because the transactions initiated from the site CAB access all

these fragments with a high frequency�

��� Application Processing Center Scenario

There are three classes of applications that are executed in the distributed database envi�

ronment� They are two classes of on�line applications f �A��	 �A
�g and the class of batch

��



applications �A��� In the previous section three optimal distributed database designs� one

each for on�line applications f �A��� �A	�g� and another for batch applications �A�� were

generated by using the methodology presented in Chapters �� 
�

From the Figures ��� 
�� and 
�� and Tables 	
�	�	�� ��� 	�� and 		 the percentage of

local and distributed transactions initiated from each site are calculated� Moreover� for each

distributed transaction the number of sites from which it accesses the data is calculated�

Since these three classes of applications that follow a strict schedule for their execution

A�� A	� A�� A�� the probability of change in class of applications to be executed at

the next change point is given by the stochastic matrix P �

P �

�
����

��� ��� ���

��� ��� ���

��� ��� ���

�
����

��� Cost Values Calculation

In chapter � the cost values needed for the Markovian decision analysis were presented�

There were two cost values de�ned� ��� the cost of executing a class of applications on a

candidate distributed database design� and �	� the cost of redesign� In this case study the

cost of executing a class of applications on a distributed database design is the average

transaction response time estimated through simulation� There are three classes of appli�

cations� and three candidate distributed database designs� The classes of applications are

on�line and batch� The �rst two candidate distributed database designs �D�� and �D	� are

optimal for the classes of on�line applications �A�� and �A	� respectively� The third candi�

date distributed database design �D�� is optimal for the class of batch applications �A���

There are nine cost values representing the estimated average transaction response time by

simulating the execution of batch applications �A�� on each of the three candidate designs�

and by simulating the execution of the two classes of on�line applications f�A��� �A��g on

each of the three candidate designs� These nine cost values were estimated as follows�

�� All the transactions executed by each class of applications are mapped to the sites

from which they are initiated�

	� For each transaction initiated from each site the following information is tabulated�

��



� Whether it is distributed or local transaction� if distributed� the number of sites

involved in processing the transaction�

� Number of fragments accessed by the transaction�

� For transactions accessing more than two fragments� whether a distributed join�

or a distributed union� or a local join� or a local union is performed�

�� Average number of data accesses for a local and distributed transaction are estimated

based on above information� In an implemented system� this information can be

gathered from the database system utilities� and transaction trace analysis�

�� At each site the arrival rate of local and distributed transactions are calculated by

using the frequency information from Table ��� From this average arrival rate of local

and distributed transactions at each site is calculated�

	� Based on the estimates for data accesses for each transaction� average number of data

accesses for local and distributed transactions are calculated�


� The average data access time is taken to be 	� milliseconds and the average commu�

nication delay is taken to be ��� seconds� The total number of locks in the distributed

database environment are estimated to be ������� This is based on the size of the

fragments� and a page size of �K bytes�

�� The transaction path lengths and the number of initial disk IO�s are same as those

used in Chapter �� The average number of locks are same as the number of data

accesses�

�� Finally� nine simulations were run to estimate the average transaction response time

for each combination of a class of applications and a candidate distributed database

design�

Then the matrix R giving the bene�t �negative of cost� values of executing each class

of applications on each of the three candidate designs is�

R �

�
����

������ ������ ������

����
� ������ ������

���
�	 ������ ������

�
����

�
�



In order to calculate the cost of redesign the operator method described in Chapter � was

used� The data transfer rate was assumed to be ��Kb�sec� This is because the distributed

data base environment is based on a local area network with full connectivity� The cost

model developed in Section ��� was used to calculate the cost of redesign in seconds� The

redesign time taken in seconds was�

RedesignTimeTaken �

�
����

� 		
� 	���

	�� � 	���


� 
��� �

�
����

But this time has to be amortized over the number of transactions that are executed

in the next time interval� The class of applications �A�� initiate �	�� transactions in six

hours� class of applications �A
� initiate ���
� transactions in three hours� and class of

batch applications initiate ��
��� transactions in three hours�

Therefore� the additional overhead of redesign cost per transaction is given by matrix�

C �

�
����

� ����� ����
�

����� � ����
	

����� �����	 �

�
����

Then by using the probability matrix P� the cost matrices R and C� the optimal policy

vector Policy� generated by the Markovian decision analysis algorithms is�

Policy �

�
���������������������

�

�

�

	

	

	

�

�

�

�
���������������������

Figure �
 shows the long run discrete Markov process �the states being �A��D��� �A
�D���

and �A	�D	�� de�ned by the above policy� This policy implies that in the long run it is

�Please refer to Table � for the meaning of each of the policy numbers in the policy vector�

��	



A A A

D D D

1

1 1

2 3

3

1.0

1.0 1.0

Figure ��� Long Run Discrete Markov Process For Application Processing Scenario I�

always optimal to use distributed database design �D�� for executing the class �A�� of on	

line applications and the class �A�� of on	line applications� But for executing the class �A
�

of batch applications it is preferred to use the candidate distributed database design �D
��

The design �D�� is preferred for processing classes of on	line applications �A�� and �A��

in the long run because it gives the least average transaction response time� For the same

reason design �D
� is preferred for the class of batch applications �A
�� Thus there is a

change in design whenever there is a change from processing the class of on	line applications

to processing the class of batch applications and vice versa�

A scenario with randomness in the class of applications initiated is considered next� After

executing the class �A�� of applications for six hours� the class �A
� of batch applications

are executed for one hour� Similarly� after executing the class �A�� of applications �A��

for three hours� the class �A
� of batch applications are executed for one hour� But after

executing the class of batch applications� one of the classes of on	line applications f�A���

�A��g is executed with equal probability� This is a practical scenario because during the

lunch time the class of batch applications are executed for one hour and after the day�s

work the class of batch applications are again run for one hour� In the mean time any class

of on	line applications are executed with equal probability� This scenario incorporates the

randomness in the class of applications to be initiated� The probability of change matrix

will be given by the following stochastic matrix�

P 

�
����

��� ��� ���

��� ��� ���

��� ��� ���

�
����

���



The cost of executing the classes of application on the candidate designs does not change�

but the overhead due to the cost of redesign changes� The cost of redesign overhead per

transaction for this application scenario is�

C �

�
����

��� ����� ������

����	 ��� ����	


����� ������ ���

�
����

For this case� the optimal policy vector generated by the Markovian decision analysis

was�

Policy �

�
���������������������

�

�

�

�

�

�







�
���������������������
2

DA

33 DA
11

DA

1.
0

0.
5

0.
5

1.
0

1

Figure ��� Long Run Discrete Markov Process For Application Processing Scenario II�

The analysis of the above policy vector shows that in the long run �see Figure ����

distributed database design �D�� will be the least costly to use for the classes of on�line

applications �A� and �A��� And the candidate distributed database design �D�� will be

the least costly to run the class of batch applications �A��� The optimal policy shows that

it is bene�cial to do redesign for this case also�

	�



��� Summary

The objective of this case study was to illustrate the applicability of the techniques proposed

in this thesis to a real life application processing scenario� In this case study� the mixed

fragmentation algorithms were used to generate the candidate designs� the simulation model

was used to estimate the average transaction response time� and the algorithms developed to

materialize the redesigned distributed databases were used to calculate the cost of redesign�

The applications� transactions and their characteristics were derived from a similar system

currently in use at Georgia Tech� In this case study two application processing scenarios

were considered� In the �rst scenario� the classes of applications were executed in a strict

schedule� and in the second scenario� two of the classes of applications were executed in

a random manner� For both these scenarios it was shown that the design �D�� was the

least costly for processing both the classes f�A��� �A��g of on	line applications� On the

contrary� the optimal design �D
� was the least costly for processing the class �A
� of batch

applications� Hence it is bene�cial to switch between these designs to process the on	line and

the batch applications in the long run� The case study is governed by the characteristics

of the applications� As there were no tools or software implemented for generating the

candidate distributed database designs� calculating the cost of redesign� and calculating the

parameter values for each of the simulation runs� a more extensive case study with lot more

applications and distributed database designs could not be undertaken� The applicability

of techniques proposed in this thesis to a real life application processing scenario has been

illustrated�

���



CHAPTER ��

CONCLUSIONS

Distributed database environment is a dynamic system� there many physical and logical

changes that cause a deterioration in the performance of the applications� The distributed

database design improves the performance of the application by reducing the irrelevant

data accessed� and data transferred� Therefore� the problem is to redesign the distributed

database so as to e�ciently process the applications in a dynamic distributed database

environment� Redesign can be corrective� preventive� or adaptive� The corrective redesign

is the easiest� and adaptive redesign is the toughest� This thesis addresses the problem of

preventive redesign where there is a random behavior in the classes of applications being

executed in the distributed database environment over a time period� This random behavior

is modeled as a discrete Markov process� A set of candidate distributed database designs

are generated for a set of classes of applications� and the problem is to select the optimal

distributed database design for each execution of an application in the long run� There

are two cost values that govern this selection� The �rst one is the cost of using a partic�

ular candidate design by an application� The second one is the cost of materializing the

populated redesigned distributed database� This thesis provides a solution for the redesign

methodology in this scenario� The major contributions of this thesis are�

� A mixed fragmentation methodology has been presented for the distribute database

design problem� This methodology is used to generate all the candidate designs in�

volving a fragmentation of the database and the allocation of these fragments for a

given set of classes of applications�

� A representation scheme for grid cells� and the notion of regular fragments has been

developed� This representation scheme is used for merging the grid cells into mixed

fragments� and materializing distributed databases�

� Two elegant solutions have been developed for the problem of materializing distributed

databases� They are the query generator approach and the operator approach� A

	
�



cost model to compare these two solutions has been developed� A multiple query

optimization algorithm has been developed to increase the e�ciency of the query

generator approach�

� A simulation model has been presented to estimate the average transaction response

time in the distributed relational database environment� The e�ect of changes in data

access time� arrival rate� and the number of data accesses on the average transaction

response time has been presented� The tradeo� between the time spent on data

access and communication delay has been studied� Application processing cost is to

be approximated as the total average cost of processing the transactions it comprises�

� A distributed database redesign methodology based on Markovian decision analysis

has been developed� The Markovian decision analysis uses the cost of materialization�

the average transaction response time� and the stochastic matrix de�ning the random

behavior in executing the applications to generate an optimal policy� This optimal

policy speci�es the candidate distributed database design that needs to be used by

any application to be executed� This optimal policy is guaranteed to process all the

applications e�ciently in the long run�

� Finally� a real life case study has been developed by conceptualizing a set of distributed

databases and applications in use at Georgia Tech� Currently� there is no single

distributed DBMS that interconnects all databases� But we assume for this case

study that such a system is in existence� This case study consisted of two classes

of on�line applications� and a class of batch applications� The optimal distributed

database designs using the mixed fragmentation methodology were generated for each

of the classes of applications� Two application processing scenarios were modeled as

discrete Markov processes� and the Markovian decision analysis was used to generate

the optimal policies� These optimal policies speci�ed that a switching between two

distributed database designs is required to e�ciently execute the given classes of

applications in the long run for both the application processing scenarios�

This is the �rst piece of work in the total redesign of distributed databases to the best of

our knowledge� The solutions presented in this dissertation are subject to further analysis

and optimization� Following are the set of problems yet to be addressed in this area of

research�

�	




Evaluation of Algorithms to Materialize Distributed Relational Databases�

�� The operator method uses the operations which are speci�ed at higher level like �split

a fragment�� �merge two fragments�� etc� But detailed algorithms specifying how to

implement these operations at the storage manager level have not been developed�

A particular distributed database management system like client�server versions of

Oracle or Sybase or Ingres needs to be considered to design and evaluate the algorithms

to perform the basic split� merge and move operations�

�� The design and development of these algorithms should also take into consideration

the issues of incremental materialization of redesigned distributed databases while the

transactions are accessing the database� This would require scheduling the materi�

alization operations on the fragments of the relations such that a minimal number

of transactions that update the database are blocked� In a well de�ned application

processing center scenario it would be feasible to know in advance which transactions

are going to be executed� This would enable us to schedule the materialization of

fragments that are not being updated by these transactions�

	� Caching of the temporary tables created during materialization process will increase

the e
ciency of the materialization algorithms� Hence a topic of future research is to

study the e�ect of caching and bu�er management on the e
ciency of the material�

ization algorithms�

�� Finally� these algorithms need to be tested on large distributed databases and ex�

perimented with various parameters such as size of relations� number of replications�

number of sites� number of fragments per relation� etc� This experimentation will give

us an insight into the materialization and maintenance problems of large distributed

relational databases�

Distributed Database Design�Redesign Tool

In this thesis we have shown the viability of the redesign methodology by means of a

case study� The next step will be to design and implement a practical distributed database

design and redesign tool� The architecture of the tool is presented in Figure ��� The various

modules of the tool are as follows

���



Simulation
Module

A

A

1

n

Mixed
Fragmentation
Methodology

Materialization
Algorithms

Average
Transaction

Response
Time Analysis

Combination

Application
P

R

Algorithms
and Allocation
Fragmentation

Creation

Engine
Optimization

Applications

-> Output

Optimal

Legend:

-> Matrix.

C

Policy
Vector

Markovian
Decision
Analysis

Designs
Candidate

Figure ��� A Distributed Database Design�Redesign Tool Architecture�

���



� A set of algorithms in the module called Application Combination to form a set of

classes of applications from a given set of applications� and generate the stochastic

matrix P�

� A set of algorithms implemented to generate the fragmentation and allocation schemes

based on the mixed fragmentation methodology� This module is used to generate a

set of candidate designs�

� A simulation module to estimate the average transaction response time for executing

a class of applications on each of the candidate distributed database designs� This

module generates the matrix R�

� A set of algorithms to calculate the cost for materializing distributed databases� These

set of algorithms generate the matrix C�

� An optimization engine that takes as input the matrices P� R� and C� and outputs the

optimal policy vector�

Extensions to the Redesign Methodology

� The random behavior of execution of classes of applications is not always a discrete

Markov process� therefore� this methodology has to be extended to the case when this

behavior follows a continuous Markov process or a semi�Markov process�

� The simulation model used to estimate the average transaction response time needs

to be extended to incorporate optimistic� and semi�optimistic concurrency control

protocols� In fact� the distributed database design tool should be integrated with the

distributed database management system so that the average transaction response is

directly measured�

� Allocation of mixed fragments depends on the transactions and the sites of their origin�

the transaction processing semantics� and the network characteristics� The transaction

processing characteristics are dependent on a particular relational database system�

Because of these interdependent factors� the allocation of mixed fragments is a very

tough problem and needs to be addressed in future�

� The adaptive redesign problem is a very tough problem� In order to attack this

problem an adaptive distributed database design methodology based on an active

���



database needs to be considered� The active database system has the capability

of monitoring the statistics collected by the distributed database system so as to

initiate actions to change the parameter values for generating the distributed database

design� The problem is to identify the set of parameters that can make the distributed

database design methodology adaptive to dynamic changes�

� In this thesis we have just considered developing distributed database design� redesign

methodology when there are no inherent constraints placed on the performance of the

applications� A tougher problem would be to design a distributed database that

guarantees a certain minimum transaction response time� Such problems will arise

in distributed multimedia database application processing scenarios� and real time

distributed database transaction processing�

���



Appendix A

BREAK� FORM AND CLUSTER OPERATIONS

Note that the fragments in the fragmentation schemes are all regular� A regular fragment is

represented by f��A� ��A� � � � � �nAg� Where ��� ��� � � � � �n are the basic vertical fragments�

and A � fa�� a�� � � � � ang denote the set of basic horizontal fragments� Then the operation

break is de�ned by the following algorithm�

break�f�

begin

repeat for each �i � r�f�

split v�f� �iA� f
�

��

v � �iA�

repeat for each a � A

split h�v� �ia� f
��

��

v � f
��

�

end repeat

f � f
�

�

end repeat

end begin

The form procedure is analogous to the break procedure� It is given below�

form�f�

begin

repeat for each �i � r�f�

v � �

repeat for each a � A

	
�



merge h�v� �ia� f
�

��

v � f
�

�

end repeat

merge v�v� v
�

� f
��

�

v
�

� f
��

end repeat

f � v
�

end begin

The function cluster�f� is de�ned as follows

cluster�f�

begin

Cl � �

repeat for each �i � r�f�

repeat for each a � A

Cl � Cl
S
f�iag

end repeat

end repeat

Clust�f� � Cl

end begin

���



Appendix B

OPTIMAL POLICY VECTOR GENERATION DETAILS

Let the initial policy vector be�

Policy �

�
���������������������

�

�

�

�

�

�

�

�

�

�
���������������������

That is� irrespective of which class of applications are being executed this policy assigns

the distributed database design D� to be used� As the above policy de�nes the discrete

markov process� the state transition probability matrix S is given �refer 	How
�� as

S �

�
���������������������

��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� ��� ��� ���

�
���������������������

The cost processing the applications using this policy is dictated by the reward matrix

R� which gives the bene�t ��ve cost for each state transition as�

���



R �

�
���������������������

����� ��� ��� ��� ��� ��� ����� ��� ���

����� ��� ��� ��� ��� ��� ����� ��� ���

����� ��� ��� ��� ��� ��� ����� ��� ���

����� ��� ��� ����� ��� ��� ��� ��� ���

����� ��� ��� ����� ��� ��� ��� ��� ���

����� ��� ��� ����� ��� ��� ��� ��� ���

��� ��� ��� ����� ��� ��� ����� ��� ���

��� ��� ��� ����� ��� ��� ����� ��� ���

��� ��� ��� ����� ��� ��� ����� ��� ���

�
���������������������

The column vector q gives the immediate gain of using this policy� each element of the

column vector q is given by�

qi �
j�NX
j��

pijrij ���	

Therefore� the immediate gain of this policy is�

q �

�
���������������������

�����

�����

�����

�����

�����

�����

�����

�����

�����

�
���������������������

Note that the state transition probability values for each of the �
 policies can be

derived and the respective immediate gains calculated� These values shall be used in policy

improvement and value�determination iteration�

�




Optimal Policy Generator

�� Value�Determination Operation

Use pij and qi for a given policy vector to solve

g � vi � qi �
NX

j��

pijvj i � �� �� � � � � N ����

for all relative values vi and g by setting vN to zero�

�� Policy�Improvement Routine

For each state i	 
nd the policy k� that maximizes

qki �
NX

j��

pkijvj ����

using the relative values vi of the previous policy �see �How���� Then k� becomes the

new policy in the ith state	 qk
�

i becomes qi	 and pk
�

ij becomes pij �

Few notes on the Optimal Policy Generator�

�� The above procedure works only when the discrete markov process is completely

ergodic� That is	 any discrete markov process whose limiting probability distribution

is independent of the starting conditions� Also an assumption is made that all policies

produce completely ergodic processes� Complete ergodicity means that each policy

de
nes a discrete Markov process with one recurrent chain� The above algorithm

can be extended to generate optimal policies when there are more than one recurrent

chains� The details are given in �How��� All these algorithms have been implemented�

�� The algorithm works by either starting at step � or step � and iterating over them till

successive iterations do not change the optimal policy� The variable g gives the gain of

using a policy vector� The gain is monotonically increasing with each iteration� The

gain and relative values vi for each state can be calculated by solving the simultaneous

linear equations ��� The relative values are interpreted as giving importance to each

of the states with respect to all other states� The relative values hold the key to


nding optimal policy vector�

���



With respect to our example N � �� the number of states in the discrete Markov process�

the number of alternative policies are ��� Since we are starting with an initial policy vector

Policy the set of equations described in step � can be de	ned and solved� This gives the

gain with this policy as 
������ The values are given by v column vector as�

v �

�
���������������������

��

��

���

�����

�����

����

�����

����

���

�
���������������������

These values with the q values are used to generate the new policy vector as de	ned in

step �� This policy vector p after the 	rst iteration is�

Policy �

�
���������������������

�

�

�

�

�

�

�

�

�

�
���������������������

This policy vector gives rise to a new stochastic matrix S and new reward matrix R

and new immediate bene	t vector q� The set of equations speci	ed in step � can again be

derived and solved to give relative values and gain� Thus this process takes place four more

times before converging on an optimal policy vector given by�

���



Policy �

�
���������������������

�

�

�

�

�

�

�

�

�

�
���������������������

The algorithms for the value�determination and policy iteration have been implemented

and were used to generate this optimal policy vector�

	
�



Appendix C

SELECT STATEMENT DESCRIBING DATA ACCESSED BY

TRANSACTIONS

Each transaction that is initiated by an application accesses some tuples and columns of the

relations� Therefore� the part of the relation accessed by each of the transaction initiated

by the applications can be described by SQL SELECT statements� Below are the list of

transactions initiated application�wise� the data accessed by them� and the site at which

they are initiated�

Application P�� accesses data de�ned by the following SQL statements initiated by its

transactions�

At Site CoC

T�� SELECT Recr�id� Recr�name� Recr�add� Recr�type

FROM Recruiters

WHERE Recr�college � 	CoC
�

T�� SELECT Recr�id� Recr�name� Recr�add

FROM Recruiters

WHERE Recr�college � 	CoC
 and Recr�type � 	ug
�

T�� SELECT Recr�id� Recr�name� Recr�add

FROM Recruiters

WHERE Recr�college � 	CoC
 and Recr�type � 	grad
�

At Site CoS

T�� SELECT Recr�id� Recr�name� Recr� add� Recr�type

FROM Recruiters

WHERE Recr�college � 	CoS
�

T�� SELECT Recr�id� Recr�name� Recr�add

FROM Recruiters

WHERE Recr�college � 	CoS
 and Recr�type � 	ug
�

��



T�� SELECT Recr�id� Recr�name� Recr�add

FROM Recruiters

WHERE Recr�college � �CoS� and Recr�type � �grad��

At Site CoE

T�� SELECT Recr�id� Recr�name� Recr� add� Recr�type

FROM Recruiters

WHERE Recr�college � �CoE��

T�� SELECT Recr�id� Recr�name� Recr�add

FROM Recruiters

WHERE Recr�college � �CoE� and Recr�type � �ug��

T�� SELECT Recr�id� Recr�name� Recr�add

FROM Recruiters

WHERE Recr�college � �CoE� and Recr�type � �grad��

At Site CoM

T���SELECT Recr�id� Recr�name� Recr�add� Recr�type

FROM Recruiters

WHERE Recr�college � �CoM��

T���SELECT Recr�id� Recr�name� Recr�add

FROM Recruiters

WHERE Recr�college � �CoM� and Recr�type � �ug��

T�	�SELECT Recr�id� Recr�name� Recr�add

FROM Recruiters

WHERE Recr�college � �CoM� and Recr�type � �grad��

At Site CAB

T�
�SELECT Recr�id� Recr�name� Recr�add

FROM Recruiters

WHERE Recr�type � �ug��

T���SELECT Recr�id� Recr�name� Recr�add

FROM Recruiters

WHERE Recr�type � �grad��

Application P	� accesses data de�ned by the following SQL statements initiated by its

transactions	


�




At Site CoC

T��� SELECT Pros�id� Pros�name� Pros�add� Pros�sex� Pros�ms� Pros�dob

FROM Prospects

WHERE Pros�college � �CoC��

T��� SELECT Pros�id� Pros�resi� Pros�app�id� Pros�term�yr

FROM Prospects

WHERE Pros�college � �CoC��

T��� SELECT Pros�id� Pros�gpa� Pros�sat�verb� Pros�sat�quan� Pros�sat�anal

FROM Prospects

WHERE Pros�college � �CoC� and Pros�type � �ug��

T��� SELECT Pros�id� Pros�gpa� Pros�gre�verb� Pros�gre�quan� Pros�gre�anal

FROM Prospects

WHERE Pros�college � �CoC� and Pros�type � �grad��

At Site CoS

T��� SELECT Pros�id� Pros�name� Pros�add� Pros�sex� Pros�ms� Pros�dob

FROM Prospects

WHERE Pros�college � �CoS��

T	
� SELECT Pros�id� Pros�resi� Pros�app�id� Pros�term�yr

FROM Prospects

WHERE Pros�college � �CoS��

T	�� SELECT Pros�id� Pros�gpa� Pros�sat�verb� Pros�sat�quan� Pros�sat�anal

FROM Prospects

WHERE Pros�college � �CoS� and Pros�type � �ug��

T		� SELECT Pros�id� Pros�gpa� Pros�gre�verb� Pros�gre�quan� Pros�gre�anal

FROM Prospects

WHERE Pros�college � �CoS� and Pros�type � �grad��

At Site CoE

T	�� SELECT Pros�id� Pros�name� Pros�add� Pros�sex� Pros�ms� Pros�dob

FROM Prospects

WHERE Pros�college � �CoE��

T	�� SELECT Pros�id� Pros�resi� Pros�app�id� Pros�term�yr

FROM Prospects

WHERE Pros�college � �CoE��

�	




T��� SELECT Pros�id� Pros�gpa� Pros�sat�verb� Pros�sat�quan� Pros�sat�anal

FROM Prospects

WHERE Pros�college � �CoE� and Pros�type � �ug��

T��� SELECT Pros�id� Pros�gpa� Pros�gre�verb� Pros�gre�quan� Pros�gre�anal

FROM Prospects

WHERE Pros�college � �CoE� and Pros�type � �grad��

At Site CoM

T��� SELECT Pros�id� Pros�name� Pros�add� Pros�sex� Pros�ms� Pros�dob

FROM Prospects

WHERE Pros�college � �CoM��

T��� SELECT Pros�id� Pros�resi� Pros�app�id� Pros�term�yr

FROM Prospects

WHERE Pros�college � �CoM��

T��� SELECT Pros�id� Pros�gpa� Pros�sat�verb� Pros�sat�quan� Pros�sat�anal

FROM Prospects

WHERE Pros�college � �CoM� and Pros�type � �ug��

T	
� SELECT Pros�id� Pros�gpa� Pros�gmat

FROM Prospects

WHERE Pros�college � �CoM� and Pros�type � �grad��

At Site CAB

T	�� SELECT Pros�id� Pros�name� Pros�add� Pros�sex� Pros�ms� Pros�dob

FROM Prospects

Pros�state � �GA� and Pros�gpa � �	
�

T	�� SELECT Pros�id� Pros�name� Pros�add� Pros�sex� Pros�ms� Pros�dob

FROM Prospects

WHERE Pros�gpa � �	�� and Pros�state in fSouth Eastg

T		� SELECT Pros�id� Pros�name� Pros�add� Pros�sex� Pros�ms� Pros�dob

FROM Prospects

WHERE Pros�international �  and Pros�toe� � �

�

Application P	� accesses data de�ned by the following SQL statements initiated by its

transactions�

��



At Site CAB

T��� SELECT Event�name� Event�place� Event�st�date� Event�end�date

FROM Events

WHERE Event�type � �ug��

T��� SELECT Event�name� Event�place� Event�st�date� Event�end�date

FROM Events

WHERE Event�type � �grad��

Application NP�� accesses data de�ned by the following SQL statements initiated by its

transactions	

At Site CoC

T��� SELECT Pros�id� Recr�id

FROM Prospects� Recruiters

WHERE Pros�type � Recr�type and Recr�college � �CoC��

At Site CoS

T��a�SELECT Pros�id� Recr�id

FROM Prospects� Recruiters

WHERE Pros�type � Recr�type and Recr�college � �CoS��

At Site CoE

T��� SELECT Pros�id� Recr�id

FROM Prospects� Recruiters

WHERE Pros�type � Recr�type and Recr�college � �CoE��

At Site CoM

T�	� SELECT Pros�id� Recr�id

FROM Prospects� Recruiters

WHERE Pros�type � Recr�type and Recr�college � �CoM��

Application NP
� accesses data de�ned by the following SQL statements initiated by its

transactions	

At Site CAB

T��� SELECT Recr�id� Pros�id� Pros�name� Pros�add


��



FROM Prospects� ProsRecr

WHERE Adv�st�date � Todays�date � � and Pros�id � Recr�id�

Application NP�� accesses data de�ned by the following SQL statements initiated by its

transactions	

At Site CBA

T��� SELECT Pros�id� Pros�name� Pros�sex� Pros�ms� Pros�state� Pros�add�

Pros�resi� Pros�app�id� Pros�term�yr

FROM Prospects�

At Site CoC

T��� SELECT Pros�id� Pros�gpa� Pros�sat�verb� Pros�sat�quan� Pros�sat�anal

FROM Prospects

WHERE Pros�college � 
CoC� and Pros�type � 
ug��

T��� SELECT Pros�id� Pros�gpa� Pros�gre�verb� Pros�gre�quan� Pros�gre�anal�

Pros�toe�

FROM Prospects

WHERE Pros�college � 
CoC� and Pros�type � 
grad��

At Site CoS

T��� SELECT Pros�id� Pros�gpa� Pros�sat�verb� Pros�sat�quan� Pros�sat�anal

FROM Prospects

WHERE Pros�college � 
CoS� and Pros�type � 
ug��

T��� SELECT Pros�id� Pros�gpa� Pros�gre�verb� Pros�gre�quan� Pros�gre�anal�

Pros�toe�

FROM Prospects

WHERE Pros�college � 
CoS� and Pros�type � 
grad��

At Site CoE

T��� SELECT Pros�id� Pros�gpa� Pros�sat�verb� Pros�sat�quan� Pros�sat�anal

FROM Prospects

WHERE Pros�college � 
CoE� and Pros�type � 
ug��

T�	� SELECT Pros�id� Pros�gpa� Pros�gre�verb� Pros�gre�quan� Pros�gre�anal�

Pros�toe�

FROM Prospects

��



WHERE Pros�college � �CoE� and Pros�type � �grad��

At Site CoM

T��� SELECT Pros�id� Pros�gpa� Pros�sat�verb� Pros�sat�quan� Pros�sat�anal

FROM Prospects

WHERE Pros�college � �CoM� and Pros�type � �ug��

T��� SELECT Pros�id� Pros�gpa� Pros�gmat

FROM Prospects

WHERE Pros�college � �CoM� and Pros�type � �grad��

Application NP�� accesses data de�ned by the following SQL statements initiated by its

transactions	

At Site CBA

T��� SELECT 


FROM Recruiters�

Application NP�� accesses data de�ned by the following SQL statements initiated by its

transactions	

At Site CBA

T��� SELECT Recr�id� Pros�id� Pros�name� Pros�add

FROM Prospects� ProsRecr

WHERE Pros�dob � �Todays�date � � and Pros�id � Recr�id�

Application NP	� accesses data de�ned by the following SQL statements initiated by its

transactions	

At Site CBA

T�
� SELECT Recr�id� Recr�name� Pros�id� Pros�name� Event�id� Event�name�

Event�place� Pros�add� Recr�add

FROM Recruiters� Prospects� Events

WHERE Event�place � Pros�place and Pros�college � Recr�college

and Pros�type � Recr�type and Event�type � Pros�type�

���



Application NP�� accesses data de�ned by the following SQL statements initiated by its

transactions�

At Site CBA

T��� SELECT Pros�id� Pros�sat�verb� Pros�sat�quan� Pros�sat�anal

FROM Prospects

WHERE Pros�type � �ug�	

Application NP�� accesses data de�ned by the following SQL statements initiated by its

transactions�

At Site CBA

T��� SELECT Pros�id� Pros�gre�verb� Pros�gre�quan� Pros�gre�anal

FROM Prospects

WHERE Pros�type � �grad�	

Application NP�� accesses data de�ned by the following SQL statements initiated by its

transactions�

At Site CBA

T��� SELECT Pros�id� Pros�toe


FROM Prospects

WHERE Pros�international � �	

Application NP	
� accesses data de�ned by the following SQL statements initiated by

its transactions�

At Site CBA

T��� SELECT Pros�id� Pros�gmat

FROM Prospects

WHERE Pros�type � �grad� and Pros�college � �CoM�	

Application NP		� accesses data de�ned by the following SQL statements initiated by

its transactions�

At Site CBA

��



T��� SELECT Pros�id� Pros�sex� Pros�gpa� Pros�sat�verb� Pros�sat�quan� Pros�sat�anal

FROM Prospects

WHERE Pros�type � �ug��

T��a�SELECT Pros�id� Pros�sex� Pros�gpa� Pros�gre�verb� Pros�gre�quan� Pros�gre�anal

FROM Prospects

WHERE Pros�type � �grad��

T��� SELECT Pros�id� Pros�sex� Pros�gpa� Pros�gmat

FROM Prospects

WHERE Pros�type � �grad��

At Site CoC

T��� SELECT Pros�id� Pros�sex� Pros�gpa� Pros�sat�verb� Pros�sat�quan� Pros�sat�anal

FROM Prospects

WHERE Pros�type � �ug� and Pros�college � �CoC��

T��� SELECT Pros�id� Pros�sex� Pros�gpa� Pros�gre�verb� Pros�gre�quan� Pros�gre�anal

FROM Prospects

WHERE Pros�type � �grad� and Pros�college � �CoC��

At site CoS

T��� SELECT Pros�id� Pros�sex� Pros�gpa� Pros�sat�verb� Pros�sat�quan� Pros�sat�anal

FROM Prospects

WHERE Pros�type � �ug� and Pros�college � �CoS��

T�	� SELECT Pros�id� Pros�sex� Pros�gpa� Pros�gre�verb� Pros�gre�quan� Pros�gre�anal

FROM Prospects

WHERE Pros�type � �grad� and Pros�college � �CoS��

At site CoE

T�
� SELECT Pros�id� Pros�sex� Pros�gpa� Pros�sat�verb� Pros�sat�quan� Pros�sat�anal

FROM Prospects

WHERE Pros�type � �ug� and Pros�college � �CoE��

T��� SELECT Pros�id� Pros�sex� Pros�gpa� Pros�gre�verb� Pros�gre�quan� Pros�gre�anal

FROM Prospects

WHERE Pros�type � �grad� and Pros�college � �CoE��

At site CoM

T��� SELECT Pros�id� Pros�sex� Pros�gpa� Pros�sat�verb� Pros�sat�quan� Pros�sat�anal

FROM Prospects

�		



WHERE Pros�type � �ug� and Pros�college � �CoM��

T��� SELECT Pros�id� Pros�sex� Pros�gpa� Pros�gmat

FROM Prospects

WHERE Pros�type � �grad� and Pros�college � �CoM��

Application NP��� accesses data de�ned by the following SQL statements initiated by

its transactions	

At Site CBA

T��� SELECT Recr�id� Recr�name� Recr�type� Recr�college� Pros�id� Pros�sex�

Pros�gpa� Pros�sat�verb� Pros�sat�quan� Pros�sat�anal

FROM ProsRecr� Prospects� Recruiters

WHERE Prospects
Pros�id � ProsRecr
Pros�id and

ProsRecr
Recr�id � Recruiters
Recr�id and

Pros�type � �ug��

T��� SELECT Recr�id� Recr�name� Recr�type� Recr�college� Pros�id� Pros�sex�

Pros�gpa� Pros�gre�verb� Pros�gre�quan� Pros�gre�anal

FROM ProsRecr� Prospects� Recruiters

WHERE Prospects
Pros�id � ProsRecr
Pros�id and

ProsRecr
Recr�id � Recruiters
Recr�id and

Pros�type � �grad��

T��� SELECT Recr�id� Recr�name� Recr�type� Recr�college� Pros�id� Pros�sex�

Pros�gpa� Pros�gmat

FROM ProsRecr� Prospects� Recruiters

WHERE Prospects
Pros�id � ProsRecr
Pros�id and

ProsRecr
Recr�id � Recruiters
Recr�id and

Pros�type � �grad� and Pros�college � �CoM��

��



BIBLIOGRAPHY

�ACL��� R� K� Agrawal� M� J� Carey� and M� Livny� Concurrency control performance
modeling� Alternatives and implications� ACM Transactions on Database Sys�

tems� �	
��������� December �����

�Ape��� P� M� G� Apers� Data allocation in distributed database systems� ACM Trans�

actions on Database Systems� ��
���	������ September �����

�BCN��� C� Batini� S� Ceri� and S� B� Navathe� Conceptual Database Design� An Entity�

Relationship Approach� Benjamin�Cummins� Inc�� �����

�CABK��� G� Copeland� W� Alexander� E� Boughter� and T� Keller� Data placement in
bubba� In Proceedings of ACM SIGMOD International Conference on Man�

agement of Data� �����

�Cas�	� R� G� Casey� Allocation of copies of a �le in an information network� In
Proceedings of Spring Joint Computer Conference� IFIPS�� pages ���	�� ���	�

�CDY��� B� Ciciani� D� M� Dias� and P�S� Yu� Analysis of replication in distributed
database systems� IEEE Transactions on Knowledge and Data Engineering�
	
	��	���	�� June �����

�Chu�� W� W� Chu� Optimal �le allocation in a multiple computer system� IEEE

Transactions on Computers� C���
���� ����

�Chu�	� P�C� Chu� A transaction�oriented approach to attribute partitioning� Informa�
tion Systems� ��
����	����	� ���	�

�CI��� W� W� Chu and I� T� Ieong� A transaction�based approach to vertical parti�
tioning for relational databases� Technical report� UCLA� �����

�CL��� M� J� Carey and M� Livny� Distributed concurrency control performance� A
study of algorithms� distribution� and replication� In Proceedings of Interna�

tional Conference on Very Large Databases� �����

�CMP��� S� Ceri� G� Martella� and G� Pelagatti� Optimal �le allocation for a distributed
on a network of minicomputers� In Proceedings of International Conference on

Databases� Aberdeen� pages �������� July �����

�CNP�	� S� Ceri� M� Negri� and G� Pelagatti� Horizontal data partitioning in database
design� In Proceedings of ACM SIGMOD International Conference on Man�

agement of Data� pages �	����� ���	�

���



�CNW��� S� Ceri� S� B� Navathe� and G� Wiederhold� Distribution design of logical
database schemas� IEEE Transactions on Software Engineering� SE��	
�����

�� July �����

�CP�� S� Ceri and G� Pelagatti� Distributed Databases� Principles and Systems� Mc�
Graw Hill� New York� ����

�CPW��� S� Ceri� B� Pernici� and G� Wiederhold� Distributed database design method�
ologies and tools� In Proceedings of the IEEE� pages 
���
�� May �����

�CY��� D� W� Cornell and P� S� Yu� A vertical partitioning algorithm for relational
databases� In Proceedings of International Conference on Data Engineering�
pages ����
� February �����

�DGG���� D� J� DeWitt� R� H� Gerber� G� Graefe� M� L� Heytens� K� B� Kumar� and
M� Muralikrishna� Gamma � a high performance data�ow database machine�
In Proceedings of International Conference on Very Large Databases� �����

�DYB��� D� M� Dias� P�S� Yu� and B� T� Bennett� On centralized versus geographically
distributed database systems� In Proceedings of International Conference on

Distributed Computing Systems� September �����

�Esw�� K� P� Eswaran� Placement of records in a �le and �le allocation in a computer
network� Information Processing� pages ������� ����

�Goe��� G� Goetz� Volcano� an extensible and parallel data�ow query processing system�
IEEE Transactions on Knowledge and Data Engineering� �����

�GP��� B� Gavish and H� Pirkul� Allocation of databases in distributed computing
systems� Management of Distributed Data Processing� pages ��
����� �����

�GP��� B� Gavish and H� Pirkul� Computer and database location in distributed com�
puter systems� IEEE Transactions on Computers� C��
	���
���
��� �����

�How��� R� A� Howard� Dynamic Programming and Markov Processes� M�I�T� Press�
�����

�HS�
� J� A� Ho�er and D� G� Severance� The use of cluster analysis in physical
database design� In Proceedings of International Conference on Very Large

Databases� pages ������ ���
�

�MCVN��� J� Muthuraj� S� Chakravarthy� R� Varadarajan� and S� B� Navathe� A formal
approach to the vertical partitioning problem in distributed database design�
In Proc� of Second International Conference on Parallel and Distributed Infor�

mation Systems� San Diego� California� �����

���



�MSW��� W� T� McCormick� P� J� Schweitzer� and T� W� White� Problem decomposi�
tion and data reorganization by a clustering technique� Operation Research�
��	
�������� September ����

�NCWD��� S� B� Navathe� S� Ceri� G� Wiederhold� and J� Dou� Vertical partitioning algo�
rithms for database design� ACM Transactions on Database Systems� 	�������
���� ����

�NR�� S� B� Navathe and M� Ra� Vertical partitioning for database design� A graph�
ical algorithm� In Proceedings of ACM SIGMOD International Conference on

Management of Data� ���

�NRJ�� D� M� Nicol and P� F� Reynolds Jr� Optimal dynamic remapping of data parallel
computations� IEEE Transactions on Computers� Febrruary ���

�Ra�� Minyoung Ra� Data Fragmentation and Allocation Algorithms for Distributed

Database Design� PhD thesis� University of Florida� ���

�RVVN�� P� I� Rivera�Vega� R� Varadarajan� and S� B� Navathe� Scheduling data redis�
tribution in distributed databases� In Proceedings of International Conference

on Data Engineering� February ���

�RW��� C� V� Ramamoorthy and B� W� Wah� The isomorphism of simple �le allocation�
IEEE Transactions on Computers� C���	����������� March ����

�SI�� D� Shin and K� B� Irani� Fragmenting relations horizontally using a knowledge�
based approach� IEEE Transactions on Software Engineering� ��	�� September
���

�SKL�� K� G� Shin� C� M� Krishna� and Y� H� Lee� Optimal dynamic control of resources
in a distributed system� IEEE Transactions on Software Engineering� October
���

�TGS�
� Y� C� Tay� N� Goodman� and R� Suri� Locking performance in centralized
databases� ACM Transactions on Database Systems� ��	�����
����� December
��
�

�TSG�
� Y� C� Tay� R� Suri� and N� Goodman� A mean value performance model for
locking in databases� The no�waiting case� Journal of the ACM� ��	��������
��
July ��
�

�VRVN�� R� Varadarajan� P� I� Rivera�Vega� and S� B� Navathe� Data redistribution
scheduling in fully connected networks� In Proceedings of ��th Annual Allerton

Conference on Communication� Control and Computing� September ���

�WN��� B� Wilson and S� B� Navathe� An analytical framework for the redesign of dis�
tributed databases� In Proceedings of the �th Adavanced Database Symposium�

Tokyo� Japan�� ����

��



�YDCI��� P� S� Yu� D� M� Dias� D� W� Cornell� and B� R� Iyer� Analysis of a�nity based
routing in multi�system data sharing� Performance Evaluation� �	
��������
June �����

�YDR���� P� S� Yu� D� M� Dias� J� T� Robinson� B� R� Iyer� and D� W� Cornell� Modelling
of centralized concurrency control in multi�system environment� In Proceedings

of ACM SIGMETRICS� pages ������� �����

�YDR���� P� S� Yu� D� M� Dias� J� T� Robinson� B� R� Iyer� and D�W� Cornell� On coupling
multi�systems through data sharing� In Proceedings of the IEEE� pages �������
May �����

�YSLS��� C� T� Yu� C� Suen� K� Lam� and M� K� Siu� Adaptive record clustering� ACM
Transactions on Database Systems� ��	
�����
��� June �����

���


