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Background



Distributed Database (1992) Ozsu & Valduriez

• A distributed database as a collection of multiple, logically 
interrelated databases located at the nodes of a distributed system. 
• Multiple sites connected by a WAN (may be LAN)

• A Distributed database Management system as the software system 
that permits the management of the distributed database and makes 
the distribution transparent to the users.
• Key point is ‘distribution transparent to users’.
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Distributed Query Execution – high level view

1. Identify the relations of distributed database the query specifies

2. Check whether the relations are stored in one site or multiple sites

3. Determine which relations from which sites need to be accessed

4. Identify data transfer from one site to another to perform query 
operations

5. Steps 3-4, are determine the query execution plan by considering 
the data access cost and data transfer costs

6. Query result is got by executing the query execution plan 
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Distributed Database Design Problem

Given a set of queries (SQL statements on Relations)

• [Fragmentation] Determine the fragments of Relations so that queries 
access as less irrelevant data as possible 

• [Allocation] Allocate the fragments to sites so that queries transfer as 
less data as possible between the sites

No optimal or best possible solution for the above problems.
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Mixed Fragmentation Methodology



Mixed fragmentation Methodology
Given a set of queries 

• [Horizontal Fragments (HF)] Use predicates (Where clauses of SQL query) 
to horizontally fragment a relation

• [Vertical Fragments (VF)] Use attributed accessed (Select part of SQL query) 
to vertically fragment a relation

• Apply both HF and VF to get grid cells (small fragment) each pertaining to 
one VF and one HF

• Merge grid cells to get Fragments called Mixed fragments. Queries access 
mixed fragments

A mixed fragmentation methodology for initial distributed database design 

Navathe, Karlapalem, Ra 

Journal of Computer and Software Engineering 1995
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Redesign Problem



Redesign Problem

• Due to changes in queries or applications a given fragmentation and 
allocation schema does not perform well and has to be changed.

• Corrective Redesign: Every once in a while use the fragmentation and 
allocation algorithms to generate a new design based on revised set 
of queries.

• Preventive Redesign: In case we know the queries that will execute 
next, one can change the design to suit those set of queries.

• Adaptive Redesign: The design adapts to the current query mix. The 
resign is a continuous process identifying queries whose performance 
has to be enhanced through redesign.
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Materialization Problem



Materialization Problem

• A populated distributed database that adheres to a given 
fragmentation and allocation schema exists.

• A new fragmentation and allocation schema is decided. 

• The data in the populated distributed database has to be materialized 
as per the new fragmentation and allocation schema.

• Materialization takes time, and would require handling of queries and 
transactions while it happens.

• Algorithms to correctly materialize new fragmentation and allocation 
schema were developed.
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Multiple Query 
Optimization Solution
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Estimating Transaction Response Time



Local and Distributed Transactions
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Simulation Model for Lock Manager Contention
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Results
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10 transactions/second
15 Transactions per second



Preventive Redesign



Preventive Redesign Policy

• Use Markov Decision Process

• Basis
• If the current set of applications changes from set A to set B, and if the 

current distributed database design is D1, then the policy gives the Design 
that needs to be used for the longer-term optimal execution of all 
transactions.

• Inputs: Probability Transition Matrix, Reward Matrix, Materialization 
cost Matrix

• Output: Redesign Policy
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Discrete Markov Process and Redesign Policy
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Optimal Redesign Policy
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K. Karlapalem, S. B. Navathe and M. Ammar, Optimal Redesign Policies to Support Dynamic 
Processing of Applications on a Distributed Relational Database System, Information Systems, 
Vol. 21, No. 4, pages 353-367, September, 1996. 



Salient Points – in 1992

• Redesign incurs materialization cost

• Preventive redesign works when the application classes are stated 
clearly

• Adaptive design works when materialization costs can be amortized

• Corrective redesign is straightforward but incurs materialization costs. 
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Design Principles of
Modern Distributed Database 

Systems
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Design principles of modern distributed DBMS

● Are there a set of fundamental design principles behind building modern 
distributed database systems?

● Can these principles be organized into a set of design decision 
dimensions?
○ What are the tradeoffs of the design decisions?

● Design dimensions
○ D1: Resource Sharing Model
○ D2: Is physical storage optimized for querying/updates?
○ D3: Distribution Transparency
○ D4: Storage and Compute Separation
○ D5: Storage Compute Capability



D1: Resource Sharing Model

1. Shared Everything
a. All nodes share access to single pool of resources (memory, processors & disk storage)
b. All nodes run the same DBMS software and have access to the same data and 

metadata
c. Examples: IBM DB2, Oracle Database, and Microsoft SQL Server
d. However, for better scalability and performance these systems moved away to other 

hybrid models
2. Shared Disk

a. Each node has its own memory and processors
b. All processes can access the same disk
c. Each node runs its own instance of the DBMS software, but all of the instances share 

access to the same disk storage
d. Examples: Oracle Real Application Clusters (RAC), Microsoft SQL Server Failover 

Clustering, and IBM DB2 PureScale



D1: Resource Sharing Model

3. Shared Memory
a. All nodes can read and manipulate data from same physical address space (main 

memory)
b. Ideal for high-performance, parallel processing applications:  multiple nodes can access 

and manipulate the same data at the same time, without the need for explicit 
communication between them

c. Examples: Oracle TimesTen, IBM solidDB, and SAP HANA

4. Shared Nothing
a. Each node has its own independent memory, processors, and disk storage
b. Can scale horizontally, by adding more nodes to the system as needed
c. Data is partitioned across multiple nodes, with each node responsible for a portion of 

the data
d. Examples: Apache Cassandra, MongoDB Sharded Clusters, and Amazon Redshift.



D2: Is physical storage optimized for 
querying/updates?

● Is the physical storage layout of the data optimized so that it can be 
efficiently read and updated by queries later?

● Two main dimensions
○ D2.1: Physical shape of the data: Columnar
○ D2.2: Partitioning/Sharding based on column values



D2: Is physical storage optimized for 
querying/updates?

● Data is stored in columns rather than rows
● More efficient storage and processing of data
● Well-suited for analytical workloads and reporting that typically involve 

aggregations and computations over large datasets
● Example Systems

○ Apache Cassandra, Amazon Redshift, Google BigQuery, Vertica
● Hybrid Systems

○ SAP HANA
■ Hybrid row and column storage based on characteristics of the data

○ MemSQL
■ Row-based layout for transaction processing and columnar storage for analytics workloads

D2.1: Columnar representation of the data



D2: Is physical storage optimized for 
querying/updates?

● Split large datasets into smaller, more manageable chunks
● Typically range-based, hash-based, or list-based
● Offers scalability, fault tolerance, and high availability
● Example Systems

○ Apache Cassandra: Uses ring-based partitioning scheme to distribute data 
across a cluster of nodes.

○ MongoDB: Uses sharding to horizontally scale data across multiple servers.
○ Apache HBase: Range-based partitioning to store data in HDFS
○ CockroachDB: Range-based partitioning to store data across a cluster of nodes.
○ Google Cloud Spanner:Uses a combination of range-based partitioning and 

TrueTime, a globally synchronized clock, to achieve strong consistency and high 
availability.

D2.2: Partitioning/Sharding based on column values



D3: Distribution Transparency

● Degree to which the distributed nature of the system is hidden from 
users and applications

1. Location transparency: Hides the physical location of data 
a. Users interact with the system as if all data were located in a single location

2. Replication transparency: Hides the replication of data across multiple 
nodes

a. Users interact with the system as if there were only a single copy of the data
3. Transaction transparency: Hides the distributed nature of transaction 

processing
a. Users interact with the system as if all transactions were processed at a single 

location
4. Fragmentation transparency: Hides the partitioning/sharding of data 

a. Users interact with the system as if all data were stored in a single location



D3: Distribution Transparency

D3.1: Location Transparency

● Google Cloud Spanner
● Amazon Aurora
● CockroachDB
● Microsoft Azure Cosmos DB
● Oracle RAC
● Apache Cassandra
● Yugabyte
● Redis
● Apache Ignite
● MongoDB
● Databricks
● Snowflake

Offer location transparency



No/partial  replication transparency

D3: Distribution Transparency

D3.2: Replication Transparency

● Oracle RAC
● MongoDB
● Apache Cassandra
● CockroachDB
● TiDB
● Google Cloud Spanner
● Amazon Aurora
● FoundationDB
● Yugabyte

Offer replication transparency

● Amazon SimpleDB
○ users cannot explicitly control the 

replication process or configure 
replication across regions



D3: Distribution Transparency

D3.3: Transaction Transparency

● Oracle RAC
● Apache Cassandra
● Amazon Aurora
● Google Cloud Spanner
● CockroachDB
● Redis
● Apache Ignite
● YugabyteDB
● VoltDB
● TiDB
● MemSQL

Offer transaction transparency

● Amazon S3
○ Object store with no support for 

transactions
● Amazon SimpleDB

○ NoSQL database that supports eventual 
consistency

No/partial  transaction transparency



D3: Distribution Transparency

D3.4: Fragmentation Transparency

● Google Cloud Spanner
● Amazon Aurora
● CockroachDB
● Microsoft SQL Server
● Oracle RAC
● Yugabyte
● Redis
● Apache Ignite
● VoltDB

Offer fragmentation transparency

● Redis Cluster
○ sharding and partitioning of data is 

done manually by the user

No/partial  fragmentation transparency



D4: Storage and Compute Separation

● Storage and compute disaggregation:storage and processing of data are 
separated
○ Data is stored on a set of distributed storage nodes
○ Processing of the data is handled by a set of compute nodes

● Different from traditional database systems where data storage and 
processing are closely coupled in a single server

● Offers the ability to scale compute and storage resources independently, 
improved fault tolerance, and better resource utilization

● Challenges
○ Network latency due to large data movement
○ Data consistency
○ Security



● Amazon Aurora
● Amazon Redshift
● Google Bigtable
● Microsoft Azure Cosmos DB
● Apache Cassandra Reaper
● Apache Hadoop
● Apache Spark
● CockroachDB
● TiDB
● YugabyteDB
● Databricks Delta Lake
● Snowflake
● Apache Iceberg
● Presto

With disaggregation

● Oracle RAC

No storage and compute disaggregation

D4: Storage and Compute Separation



D5: Storage Compute Capability

● Typically, distributed databases use traditional storage devices such as 
HDDs or SSDs for storing data and separate compute nodes for 
processing queries and executing transactions

● In-memory databases store data in memory and processed by the same 
nodes that store the data

● Some distributed databases use specialized hardware, such as field-
programmable gate arrays (FPGAs) or graphics processing units (GPUs), 
for accelerating certain types of computations



D5: Storage Compute Capability

Distributed databases that use FPGAs with storage include:

● AWS Elasticache for Redis: FPGA-accelerated computation on Amazon 
EC2 F1 instances.

● MemSQL: FPGAs to accelerate query processing 
● Microsoft Azure SQL Database: Feature called ‘Accelerated Database 

Recovery’ which uses FPGA-accelerated log processing to speed up 
database recovery.

● OceanBase (Alibaba): FPGA-accelerated database service.Supports real-
time data processing and analytics.



D5: Storage Compute Capability

Distributed databases that use GPUs with storage include:

● BlazingSQL: GPU-accelerated data science libraries for analytics
● MapD/OmniSciDB: Distributed analytics and visualization platform that 

uses GPUs
● Kinetica: Distributed in-memory database for real-time analytics
● BrytlytDB: Distributed GPU-accelerated relational DBMS
● PG-Strom: extension for the PostgreSQL that uses GPUs
● ZillizDB: Open-source distributed DBMS that offers GPU-accelerated 

data processing engine based on Apache Arrow



D5: Storage Compute Capability

Other example systems

● Google Bigtable: Distributed KV store
○ Uses Google's proprietary Colossus file system that can perform some 

computation, such as filtering and aggregation
○ Cloud Bigtable filters allow developers to specify code that is executed at 

various stages of data retrieval to do data validation, aggregation, 
transformation, and access control

● YugabyteDB, CockroachDB: Use RocksDB that is capable of performing 
basic computation on the data it stores, such as filtering, sorting, and 
aggregation



Summary

● D1: Resource Sharing Model
○ Shared Everything, Disk, Memory and Nothing

● D2: Is physical storage optimized for querying/updates?
○ Columnar vs Row storage
○ Partitioning/Sharding

● D3: Distribution Transparency
○ Location, Replication, Fragmentation and Transaction

● D4: Storage and Compute Separation
● D5: Storage Compute Capability

○ FPGA, GPU, Specialized file systems



Relook Distributed Database Design 
Circa 2023
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Parallel Query Execution Strategies

• Parallel DBMS community also considers some of the techniques 
(fragmentation, partitioning) of distributed database design 

• Systems like Gamma, and Teradata – use fixed horizontal fragmentation 
techniques based on random, range, and hash placement of rows across 
the parallel system

• Onus is on simple query data localization and result combination

• Current solutions like Map-Reduce, and others expand the horizontal 
fragmentation for efficient execution of queries while keeping query 
optimization simple.

• Vertica uses extreme vertical partitioning for storage and efficient query 
execution.
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Local Parallel, Global Distributed Architecture 
(LPGD)

Local Parallel –
Use any of the parallel 
processing solutions to 

execute queries efficiently

Global Distributed –
Consider globally distributed database 
with fragmentation and allocation with 

its aim to reduce – irrelevant data access 
and irrelevant data transfer

Local Parallel –
Use any of the parallel 
processing solutions to 

execute queries efficiently

Local Parallel –
Use any of the parallel 
processing solutions to 

execute queries efficiently
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LPGD Architecture

• There is transparency between local parallel and globally distributed.

• Local systems can use efficient local storage and parallel processing 
solutions without impacting the globally distributed database.

• Global distributed database design can use advanced fragmentation 
and allocation techniques to determine local databases.

• The transparency and execution are complimentary.

• The distributed database designer can design while considering the 
parallel processing capability of local systems.
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Query / Data Dependency
Data↓Query Access→ 20% of queries 80% of Queries

20% of Data Fragmentation Sharding

80% of Data Sharding Fragmentation 
& Sharding
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The data skew can provide for a 20%/80% split of data access and 
impact fragmentation. Knowing which fragment to access or not will 
reduce query execution cost. 



Fragmentation and Storage Compute 
Capability
• One way to model storage compute capability is that storage 

dynamically delivers fragments based on query requirements.

• Fragmentation can complement storage computing capability by 
efficiently processing partial selects on fragments. Hence a finer level 
of fragmentation is not needed.

• The allocation can be simplified because of fewer fragments.
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Distributed Database Designer’s choice

• Even if 2 TB of irrelevant data is accessed, it adds to about 1000 seconds to 
query execution time + additional data transfer and compute time, if any.

• Modern distributed database systems can execute queries that access even 
more irrelevant data and move irrelevant data.

• Thus, a coordinated effort to map fragmentation got from queries to 
exploit judiciously sharding to reduce irrelevant data access in a dynamic 
environment is a challenging problem. 

• Over time, as database sizes even increase, the cost of storage and 
computing increases, and the dollar cost for query execution becomes a 
concern.

• Reward-based approaches to dynamically decide on sharding can work 
better if the relations are already fragmented.
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Summary

• Introduced 30-year-old work on ‘redesign of distributed relational 
databases’

• Gave an overview of current distributed database systems 
architecture across various dimensions

• Provided a fragmentation perspective for distributed database 
designers for designing their databases.
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