
“Redesign of Distributed
Relational Databases”

Perspectives after thirty years!
Kamalakar Karlapalem

IIIT, Hyderabad, India

kamal@iiit.ac.in

April 28th 2023

at College of Computing, Georgia Tech, Atlanta, USA.

Based on Joint DASFAA 2023 tutorial with Satya Valluri, Databricks USA.

mailto:kamal@iiit.ac.in

Outline

• Background

• Redesign of Distributed Relational Databases

• Aspects of Current Distributed Database Processing

• Local Parallel/Distributed & Globally distributed

• Summary

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 2

Background

Distributed Database (1992) Ozsu & Valduriez

• A distributed database as a collection of multiple, logically
interrelated databases located at the nodes of a distributed system.
• Multiple sites connected by a WAN (may be LAN)

• A Distributed database Management system as the software system
that permits the management of the distributed database and makes
the distribution transparent to the users.
• Key point is ‘distribution transparent to users’.

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 4

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 5

Global

Database

AbstractQuery

D
D

B
M

SQuery

ResultResult

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 6

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 7

Distributed Query Execution – high level view

1. Identify the relations of distributed database the query specifies

2. Check whether the relations are stored in one site or multiple sites

3. Determine which relations from which sites need to be accessed

4. Identify data transfer from one site to another to perform query
operations

5. Steps 3-4, are determine the query execution plan by considering
the data access cost and data transfer costs

6. Query result is got by executing the query execution plan

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 8

Distributed Database Design Problem

Given a set of queries (SQL statements on Relations)

• [Fragmentation] Determine the fragments of Relations so that queries
access as less irrelevant data as possible

• [Allocation] Allocate the fragments to sites so that queries transfer as
less data as possible between the sites

No optimal or best possible solution for the above problems.

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 9

Mixed Fragmentation Methodology

Mixed fragmentation Methodology
Given a set of queries

• [Horizontal Fragments (HF)] Use predicates (Where clauses of SQL query)
to horizontally fragment a relation

• [Vertical Fragments (VF)] Use attributed accessed (Select part of SQL query)
to vertically fragment a relation

• Apply both HF and VF to get grid cells (small fragment) each pertaining to
one VF and one HF

• Merge grid cells to get Fragments called Mixed fragments. Queries access
mixed fragments

A mixed fragmentation methodology for initial distributed database design

Navathe, Karlapalem, Ra

Journal of Computer and Software Engineering 1995

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 11

Mixed Fragments

1

3

4

2

a c db

Redesign Problem

Redesign Problem

• Due to changes in queries or applications a given fragmentation and
allocation schema does not perform well and has to be changed.

• Corrective Redesign: Every once in a while use the fragmentation and
allocation algorithms to generate a new design based on revised set
of queries.

• Preventive Redesign: In case we know the queries that will execute
next, one can change the design to suit those set of queries.

• Adaptive Redesign: The design adapts to the current query mix. The
resign is a continuous process identifying queries whose performance
has to be enhanced through redesign.

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 14

Materialization Problem

Materialization Problem

• A populated distributed database that adheres to a given
fragmentation and allocation schema exists.

• A new fragmentation and allocation schema is decided.

• The data in the populated distributed database has to be materialized
as per the new fragmentation and allocation schema.

• Materialization takes time, and would require handling of queries and
transactions while it happens.

• Algorithms to correctly materialize new fragmentation and allocation
schema were developed.

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 16

Em
p

lo
ye

e

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 17

Multiple Query
Optimization Solution

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 18

Estimating Transaction Response Time

Local and Distributed Transactions

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 20

Simulation Model for Lock Manager Contention

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 21

Results

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 22

10 transactions/second
15 Transactions per second

Preventive Redesign

Preventive Redesign Policy

• Use Markov Decision Process

• Basis
• If the current set of applications changes from set A to set B, and if the

current distributed database design is D1, then the policy gives the Design
that needs to be used for the longer-term optimal execution of all
transactions.

• Inputs: Probability Transition Matrix, Reward Matrix, Materialization
cost Matrix

• Output: Redesign Policy

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 24

Discrete Markov Process and Redesign Policy

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 25

Optimal Redesign Policy

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 26

K. Karlapalem, S. B. Navathe and M. Ammar, Optimal Redesign Policies to Support Dynamic
Processing of Applications on a Distributed Relational Database System, Information Systems,
Vol. 21, No. 4, pages 353-367, September, 1996.

Salient Points – in 1992

• Redesign incurs materialization cost

• Preventive redesign works when the application classes are stated
clearly

• Adaptive design works when materialization costs can be amortized

• Corrective redesign is straightforward but incurs materialization costs.

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 27

Design Principles of
Modern Distributed Database

Systems

Modern Database Systems Landscape

MySQL

PostgreSQL

SQL
ServerOracle

SQLLite

MariaDB

Snowflake
Amazon
DynamoDB

Yugabyte

Azure
Cosmos DB

IBM DB2
Teradata

Amazon
Redshift

CockroachDB

SAP
HANA

Apache
Hive

Apache
Impala

Amazon
Aurora

Google
BigQuery

Amazon
SageMaker

IBM
Netezza

Apache
Cassandra

MongoDB

DuckDB

Teradata

VoltDB

Vitess

Percona

Google
Bigtable Redis

Databricks

CouchDB Citus Data

AlloyDB
PrestoDB

TiDB

Vitesse

FoundationDB Neo4
j

Design principles of modern distributed DBMS

● Are there a set of fundamental design principles behind building modern
distributed database systems?

● Can these principles be organized into a set of design decision
dimensions?
○ What are the tradeoffs of the design decisions?

● Design dimensions
○ D1: Resource Sharing Model
○ D2: Is physical storage optimized for querying/updates?
○ D3: Distribution Transparency
○ D4: Storage and Compute Separation
○ D5: Storage Compute Capability

D1: Resource Sharing Model

1. Shared Everything
a. All nodes share access to single pool of resources (memory, processors & disk storage)
b. All nodes run the same DBMS software and have access to the same data and

metadata
c. Examples: IBM DB2, Oracle Database, and Microsoft SQL Server
d. However, for better scalability and performance these systems moved away to other

hybrid models
2. Shared Disk

a. Each node has its own memory and processors
b. All processes can access the same disk
c. Each node runs its own instance of the DBMS software, but all of the instances share

access to the same disk storage
d. Examples: Oracle Real Application Clusters (RAC), Microsoft SQL Server Failover

Clustering, and IBM DB2 PureScale

D1: Resource Sharing Model

3. Shared Memory
a. All nodes can read and manipulate data from same physical address space (main

memory)
b. Ideal for high-performance, parallel processing applications: multiple nodes can access

and manipulate the same data at the same time, without the need for explicit
communication between them

c. Examples: Oracle TimesTen, IBM solidDB, and SAP HANA

4. Shared Nothing
a. Each node has its own independent memory, processors, and disk storage
b. Can scale horizontally, by adding more nodes to the system as needed
c. Data is partitioned across multiple nodes, with each node responsible for a portion of

the data
d. Examples: Apache Cassandra, MongoDB Sharded Clusters, and Amazon Redshift.

D2: Is physical storage optimized for
querying/updates?

● Is the physical storage layout of the data optimized so that it can be
efficiently read and updated by queries later?

● Two main dimensions
○ D2.1: Physical shape of the data: Columnar
○ D2.2: Partitioning/Sharding based on column values

D2: Is physical storage optimized for
querying/updates?

● Data is stored in columns rather than rows
● More efficient storage and processing of data
● Well-suited for analytical workloads and reporting that typically involve

aggregations and computations over large datasets
● Example Systems

○ Apache Cassandra, Amazon Redshift, Google BigQuery, Vertica
● Hybrid Systems

○ SAP HANA
■ Hybrid row and column storage based on characteristics of the data

○ MemSQL
■ Row-based layout for transaction processing and columnar storage for analytics workloads

D2.1: Columnar representation of the data

D2: Is physical storage optimized for
querying/updates?

● Split large datasets into smaller, more manageable chunks
● Typically range-based, hash-based, or list-based
● Offers scalability, fault tolerance, and high availability
● Example Systems

○ Apache Cassandra: Uses ring-based partitioning scheme to distribute data
across a cluster of nodes.

○ MongoDB: Uses sharding to horizontally scale data across multiple servers.
○ Apache HBase: Range-based partitioning to store data in HDFS
○ CockroachDB: Range-based partitioning to store data across a cluster of nodes.
○ Google Cloud Spanner:Uses a combination of range-based partitioning and

TrueTime, a globally synchronized clock, to achieve strong consistency and high
availability.

D2.2: Partitioning/Sharding based on column values

D3: Distribution Transparency

● Degree to which the distributed nature of the system is hidden from
users and applications

1. Location transparency: Hides the physical location of data
a. Users interact with the system as if all data were located in a single location

2. Replication transparency: Hides the replication of data across multiple
nodes

a. Users interact with the system as if there were only a single copy of the data
3. Transaction transparency: Hides the distributed nature of transaction

processing
a. Users interact with the system as if all transactions were processed at a single

location
4. Fragmentation transparency: Hides the partitioning/sharding of data

a. Users interact with the system as if all data were stored in a single location

D3: Distribution Transparency

D3.1: Location Transparency

● Google Cloud Spanner
● Amazon Aurora
● CockroachDB
● Microsoft Azure Cosmos DB
● Oracle RAC
● Apache Cassandra
● Yugabyte
● Redis
● Apache Ignite
● MongoDB
● Databricks
● Snowflake

Offer location transparency

No/partial replication transparency

D3: Distribution Transparency

D3.2: Replication Transparency

● Oracle RAC
● MongoDB
● Apache Cassandra
● CockroachDB
● TiDB
● Google Cloud Spanner
● Amazon Aurora
● FoundationDB
● Yugabyte

Offer replication transparency

● Amazon SimpleDB
○ users cannot explicitly control the

replication process or configure
replication across regions

D3: Distribution Transparency

D3.3: Transaction Transparency

● Oracle RAC
● Apache Cassandra
● Amazon Aurora
● Google Cloud Spanner
● CockroachDB
● Redis
● Apache Ignite
● YugabyteDB
● VoltDB
● TiDB
● MemSQL

Offer transaction transparency

● Amazon S3
○ Object store with no support for

transactions
● Amazon SimpleDB

○ NoSQL database that supports eventual
consistency

No/partial transaction transparency

D3: Distribution Transparency

D3.4: Fragmentation Transparency

● Google Cloud Spanner
● Amazon Aurora
● CockroachDB
● Microsoft SQL Server
● Oracle RAC
● Yugabyte
● Redis
● Apache Ignite
● VoltDB

Offer fragmentation transparency

● Redis Cluster
○ sharding and partitioning of data is

done manually by the user

No/partial fragmentation transparency

D4: Storage and Compute Separation

● Storage and compute disaggregation:storage and processing of data are
separated
○ Data is stored on a set of distributed storage nodes
○ Processing of the data is handled by a set of compute nodes

● Different from traditional database systems where data storage and
processing are closely coupled in a single server

● Offers the ability to scale compute and storage resources independently,
improved fault tolerance, and better resource utilization

● Challenges
○ Network latency due to large data movement
○ Data consistency
○ Security

● Amazon Aurora
● Amazon Redshift
● Google Bigtable
● Microsoft Azure Cosmos DB
● Apache Cassandra Reaper
● Apache Hadoop
● Apache Spark
● CockroachDB
● TiDB
● YugabyteDB
● Databricks Delta Lake
● Snowflake
● Apache Iceberg
● Presto

With disaggregation

● Oracle RAC

No storage and compute disaggregation

D4: Storage and Compute Separation

D5: Storage Compute Capability

● Typically, distributed databases use traditional storage devices such as
HDDs or SSDs for storing data and separate compute nodes for
processing queries and executing transactions

● In-memory databases store data in memory and processed by the same
nodes that store the data

● Some distributed databases use specialized hardware, such as field-
programmable gate arrays (FPGAs) or graphics processing units (GPUs),
for accelerating certain types of computations

D5: Storage Compute Capability

Distributed databases that use FPGAs with storage include:

● AWS Elasticache for Redis: FPGA-accelerated computation on Amazon
EC2 F1 instances.

● MemSQL: FPGAs to accelerate query processing
● Microsoft Azure SQL Database: Feature called ‘Accelerated Database

Recovery’ which uses FPGA-accelerated log processing to speed up
database recovery.

● OceanBase (Alibaba): FPGA-accelerated database service.Supports real-
time data processing and analytics.

D5: Storage Compute Capability

Distributed databases that use GPUs with storage include:

● BlazingSQL: GPU-accelerated data science libraries for analytics
● MapD/OmniSciDB: Distributed analytics and visualization platform that

uses GPUs
● Kinetica: Distributed in-memory database for real-time analytics
● BrytlytDB: Distributed GPU-accelerated relational DBMS
● PG-Strom: extension for the PostgreSQL that uses GPUs
● ZillizDB: Open-source distributed DBMS that offers GPU-accelerated

data processing engine based on Apache Arrow

D5: Storage Compute Capability

Other example systems

● Google Bigtable: Distributed KV store
○ Uses Google's proprietary Colossus file system that can perform some

computation, such as filtering and aggregation
○ Cloud Bigtable filters allow developers to specify code that is executed at

various stages of data retrieval to do data validation, aggregation,
transformation, and access control

● YugabyteDB, CockroachDB: Use RocksDB that is capable of performing
basic computation on the data it stores, such as filtering, sorting, and
aggregation

Summary

● D1: Resource Sharing Model
○ Shared Everything, Disk, Memory and Nothing

● D2: Is physical storage optimized for querying/updates?
○ Columnar vs Row storage
○ Partitioning/Sharding

● D3: Distribution Transparency
○ Location, Replication, Fragmentation and Transaction

● D4: Storage and Compute Separation
● D5: Storage Compute Capability

○ FPGA, GPU, Specialized file systems

Relook Distributed Database Design
Circa 2023

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 48

Parallel Query Execution Strategies

• Parallel DBMS community also considers some of the techniques
(fragmentation, partitioning) of distributed database design

• Systems like Gamma, and Teradata – use fixed horizontal fragmentation
techniques based on random, range, and hash placement of rows across
the parallel system

• Onus is on simple query data localization and result combination

• Current solutions like Map-Reduce, and others expand the horizontal
fragmentation for efficient execution of queries while keeping query
optimization simple.

• Vertica uses extreme vertical partitioning for storage and efficient query
execution.

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 49

Local Parallel, Global Distributed Architecture
(LPGD)

Local Parallel –
Use any of the parallel
processing solutions to

execute queries efficiently

Global Distributed –
Consider globally distributed database
with fragmentation and allocation with

its aim to reduce – irrelevant data access
and irrelevant data transfer

Local Parallel –
Use any of the parallel
processing solutions to

execute queries efficiently

Local Parallel –
Use any of the parallel
processing solutions to

execute queries efficiently

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 50

LPGD Architecture

• There is transparency between local parallel and globally distributed.

• Local systems can use efficient local storage and parallel processing
solutions without impacting the globally distributed database.

• Global distributed database design can use advanced fragmentation
and allocation techniques to determine local databases.

• The transparency and execution are complimentary.

• The distributed database designer can design while considering the
parallel processing capability of local systems.

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 51

Query / Data Dependency
Data↓Query Access→ 20% of queries 80% of Queries

20% of Data Fragmentation Sharding

80% of Data Sharding Fragmentation
& Sharding

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 52

The data skew can provide for a 20%/80% split of data access and
impact fragmentation. Knowing which fragment to access or not will
reduce query execution cost.

Fragmentation and Storage Compute
Capability
• One way to model storage compute capability is that storage

dynamically delivers fragments based on query requirements.

• Fragmentation can complement storage computing capability by
efficiently processing partial selects on fragments. Hence a finer level
of fragmentation is not needed.

• The allocation can be simplified because of fewer fragments.

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 53

Distributed Database Designer’s choice

• Even if 2 TB of irrelevant data is accessed, it adds to about 1000 seconds to
query execution time + additional data transfer and compute time, if any.

• Modern distributed database systems can execute queries that access even
more irrelevant data and move irrelevant data.

• Thus, a coordinated effort to map fragmentation got from queries to
exploit judiciously sharding to reduce irrelevant data access in a dynamic
environment is a challenging problem.

• Over time, as database sizes even increase, the cost of storage and
computing increases, and the dollar cost for query execution becomes a
concern.

• Reward-based approaches to dynamically decide on sharding can work
better if the relations are already fragmented.

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 54

Summary

• Introduced 30-year-old work on ‘redesign of distributed relational
databases’

• Gave an overview of current distributed database systems
architecture across various dimensions

• Provided a fragmentation perspective for distributed database
designers for designing their databases.

18th April 2023 Email kamal@iiit.ac.in for any questions on this slide Slide Number 55

References

1. Kim, W., & Garcia-Molina, H. (1995). Partitioning Large Databases. In Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data (pp. 206-217).

2. Ozsu, M. T., & Valduriez, P. (2011). Principles of Distributed Database Systems (3rd ed.). Springer.
3. Coulouris, G., Dollimore, J., & Kindberg, T. (2011). Distributed Systems: Concepts and Design (5th ed.). Addison-Wesley.
4. Chandra, T. D., & Toueg, S. (1996). Unreliable Failure Detectors for Reliable Distributed Systems. Journal of the ACM, 43(2), 225-

267.
5. Gray, J. (1986). The Transaction Concept: Virtues and Limitations. In Jim Gray on distributed databases (pp. 407-414). Morgan

Kaufmann.
6. Bernstein, Philip A., and Nathan Goodman. Concurrency control in distributed database systems. ACM Computing Surveys

(CSUR) 13, no. 2 (1981): 185-221.
7. Sadoghi, Mohammad, Hans-Arno Jacobsen, and Bettina Kemme. Distributed transaction management: a survey. IEEE

Transactions on Parallel and Distributed Systems 25, no. 4 (2014): 1010-1027.
8. G. Alonso, D. Agrawal, A. El Abbadi, and M. Kamath, Transactional consistency and automatic management in an actively

replicated storage system, Proceedings of the 1996 ACM SIGMOD international conference on Management of data, 1996, pp.
83–94.

9. J. Gray, R. Lorie, G. Putzolu, and I. Traiger, Granularity of locks and degrees of consistency in a shared database, VLDB Journal,
vol. 3, no. 2, pp. 248–261, 1979.

10. D. B. Lomet and M. P. Atkinson, Transactional client-server caches for web applications, Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, 2005, pp. 505–516.

References

11. A. Adya, Weak consistency: A generalized theory and optimistic implementations for distributed transactions, Massachusetts
Institute of Technology, 1999.

12. J. Gray and A. Reuter, Transaction processing: concepts and techniques. Morgan Kaufmann, 1993.
13. D. J. Abadi, Consistency Tradeoffs in Modern Distributed Database System Design, IEEE Computer Society, pp. 398-409, 2012.
14. P. Bailis, A. Ghodsi, J. M. Hellerstein, I. Stoica, Bolt-on Causal Consistency, Proc. of the 7th ACM European Conference on

Computer Systems (EuroSys), pp. 81-94, 2012.
15. S. Das, D. Agrawal, A. El Abbadi, Replication and Consistency Management in Distributed Databases, Springer, 2013.
16. J. Kleppmann, Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems,

O'Reilly Media, 2017
17. Stonebraker, M. (1986). The case for shared nothing. Database engineering, 9-22.
18. DeWitt, D. J., & Gray, J. (1992). Parallel database systems: the future of high performance database systems. Communications of

the ACM, 35(6), 85-98.
19. Agrawal, R., & Carey, M. (1993). Distributed database systems. ACM Computing Surveys (CSUR), 25(2), 171-236.
20. Kemper, A., & Neumann, T. (2011). Hyper: A hybrid OLTP&OLAP main memory database system based on virtual memory

snapshots. Proceedings of the 2011 ACM SIGMOD international conference on Management of data, 305-316.
21. Ailamaki, A., DeWitt, D. J., & Hill, M. D. (2001). DBMSs on a modern processor: Where does time go?. Proceedings 27th

International Conference on Very Large Data Bases, 266-275.

References

22. Stonebraker, M., Madden, S., Abadi, D. J., Harizopoulos, S., Hachem, N., & Helland, P. (2007). The end of an architectural era (it's
time for a complete rewrite). Proceedings of the 33rd international conference on Very large data bases, 1150-1160.

23. Dias, M. B., & Silva, V. T. (2016). A survey on distributed database systems. Journal of Systems and Software, 122, 262-272.
24. Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X., Cherniack, M., Ferreira, etal. (2005). C-store: a column-oriented DBMS. In

Proceedings of the 31st international conference on Very large data bases (pp. 553-564).
25. Abadi, D. J., Madden, S., & Ferreira, M. (2008, April). Integrating compression and execution in column-oriented database

systems. In Proceedings of the 2008 ACM SIGMOD international conference on Management of data (pp. 671-682).
26. Graefe, G. (2010). Modern B-tree techniques. Foundations and Trends in Databases, 3(4), 203-402.
27. Apache Arrow (2021). Columnar format. Retrieved from https://arrow.apache.org/docs/format/Columnar.html
28. Apache Parquet (2021). Columnar storage. Retrieved from https://parquet.apache.org/documentation/latest/
29. Stonebraker, M., Brown, P. F., Zhang, D., & Hellerstein, J. M. (2007). Towards database virtualization for database-as-a-service. In

Proceedings of the 2007 ACM SIGMOD international conference on Management of data (pp. 119-130).
30. Leis, V., Kemper, A., Neumann, T., & Schubert, S. (2018). The Design and Implementation of Modern Column-Oriented Database

Systems. Foundations and Trends in Databases, 8(1-2), 1-259.

https://arrow.apache.org/docs/format/Columnar.html
https://parquet.apache.org/documentation/latest/

References

31. Plattner, Hasso, et al. A common database approach for OLTP and OLAP using an in-memory column database. Proceedings of
the 35th SIGMOD international conference on Management of data. 2009.

32. Härder, Theo, and Hasso Plattner. Architecture of the SAP HANA database. IEEE Data Eng. Bull. 33.1 (2010): 16-26.
33. Farooq, Muhammad Bilal, et al. SAP HANA: A review of history, architecture, and performance. Journal of Advanced Research in

Dynamical and Control Systems 10.6 (2018): 1836-1847.
34. Halverson, Paul, et al. SAP HANA database backup and recovery using storage snapshot integration. (2016).
35. MemSQL: The No-Limits Database. MemSQL Inc. Technical Whitepaper.
36. Link: https://www.memsql.com/resources/the-no-limits-database/
37. Nishtala, R., Agrawal, P., Chaudhuri, S., Das, S., Kamath, P., Madden, et al, R. (2013, June). The design and implementation of

modern column-oriented database systems. In Proceedings of the VLDB Endowment, 6(7), 539-550.
38. Kallman, R., Kimura, H., Natkins, J., Rasin, A., Rosenthal, A., & Zdonik, S. B. (2015, April). H-Store vs. MemSQL: comparing in-

memory database technologies. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data
(pp. 1547-1558).

39. Kallman, R., Kimura, H., Natkins, J., Rasin, A., Rosenthal, A., & Zdonik, S. (2013, June). H-store: a high-performance, distributed
main memory transaction processing system. In Proceedings of the VLDB Endowment, 6(7), 701-712.

https://www.memsql.com/resources/the-no-limits-database/

References

40. IBM DB2: IBM DB2 with BLU Acceleration: The Always-On Enterprise Data Warehouse:
https://www.ibm.com/docs/en/db2/11.5?topic=acceleration-always-enterprise-data-warehouse

41. Oracle Database: Oracle Database 19c: Data Management for the Modern Age:
https://www.oracle.com/database/technologies/data-management.html

42. Microsoft SQL Server: Microsoft SQL Server 2019: Transform Data into Insights: https://www.microsoft.com/en-us/sql-
server/sql-server-2019

43. Oracle Real Application Clusters (RAC): Oracle Real Application Clusters 12c Release 2 Technical Overview:
https://www.oracle.com/database/technologies/high-availability/rac/overview.html

44. Microsoft SQL Server Failover Clustering: SQL Server Failover Clustering (Windows): https://docs.microsoft.com/en-us/sql/sql-
server/failover-clusters/windows/sql-server-failover-cluster-instances-sql-server?view=sql-server-ver15

45. IBM DB2 PureScale: IBM DB2 pureScale: Scale out for cloud and analytics workloads:
https://www.ibm.com/docs/en/db2/11.5?topic=scale-scale-out-cloud-analytics

46. Oracle TimesTen In-Memory Database Overview and Architecture by Oracle Corporation, 2015. Available at:
https://docs.oracle.com/database/timesten-18.1/TTODB/timesten-in-memory-database-overview.htm

47. IBM solidDB Universal Cache: A Distributed Memory Cache for High Performance Applications by IBM Corporation, 2009.
Available at:
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.db2.luw.admin.ha.doc/doc/c0010585.html

https://www.ibm.com/docs/en/db2/11.5?topic=acceleration-always-enterprise-data-warehouse
https://www.oracle.com/database/technologies/data-management.html
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://www.oracle.com/database/technologies/high-availability/rac/overview.html
https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/sql-server-failover-cluster-instances-sql-server?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/sql-server/failover-clusters/windows/sql-server-failover-cluster-instances-sql-server?view=sql-server-ver15
https://www.ibm.com/docs/en/db2/11.5?topic=scale-scale-out-cloud-analytics
https://docs.oracle.com/database/timesten-18.1/TTODB/timesten-in-memory-database-overview.htm
https://www.ibm.com/support/knowledgecenter/SSEPH2_14.1.0/com.ibm.db2.luw.admin.ha.doc/doc/c0010585.html

References

48. Apache Cassandra Architecture by Apache Cassandra Project, 2021. Available at:
https://cassandra.apache.org/doc/latest/architecture/index.html

49. Sharded Cluster Concepts by MongoDB, Inc., 2022. Available at: https://docs.mongodb.com/manual/sharding/
50. Amazon Redshift Architecture by Amazon Web Services, Inc., 2021. Available at:

https://docs.aws.amazon.com/redshift/latest/dg/c_redshift-architecture.html
51. Google BigQuery. https://cloud.google.com/bigquery
52. Vertica Systems. Vertica - Analytics Platform: Unified Analytics Warehouse. https://www.vertica.com/
53. Apache HBase. https://hbase.apache.org/
54. CockroachDB: Distributed SQL Database. https://www.cockroachlabs.com/
55. Cloud Spanner - Fully Managed Relational Database - Google Cloud. https://cloud.google.com/spanner
56. Amazon Aurora - MySQL and PostgreSQL Compatible Relational Database Built for the Cloud.

https://aws.amazon.com/rds/aurora/
57. Microsoft Azure Cosmos DB: https://azure.microsoft.com/en-us/services/cosmos-db/
58. Distributed SQL Database - YugabyteDB. https://www.yugabyte.com/
59. Redis: https://redislabs.com/
60. Apache Ignite: In-Memory Data Fabric. https://ignite.apache.org/
61. Databricks: Unified Data Analytics Platform - One Cloud Platform for Massive Scale AI and Data Engineering.

https://databricks.com/
62. Snowflake: Cloud Data Platform. https://www.snowflake.com/

https://cassandra.apache.org/doc/latest/architecture/index.html
https://docs.mongodb.com/manual/sharding/
https://docs.aws.amazon.com/redshift/latest/dg/c_redshift-architecture.html
https://cloud.google.com/bigquery
https://www.vertica.com/
https://hbase.apache.org/
https://www.cockroachlabs.com/
https://cloud.google.com/spanner
https://aws.amazon.com/rds/aurora/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://www.yugabyte.com/
https://redislabs.com/
https://ignite.apache.org/
https://databricks.com/
https://www.snowflake.com/

References

63. TiDB: Huang, E., Huang, W., & Zhu, S. (2017). TiDB: A scalable distributed HTAP database. In Proceedings of the 2017 ACM International
Conference on Management of Data (pp. 623-628).

64. Amazon Aurora documentation, https://aws.amazon.com/rds/aurora/
65. FoundationDB documentation, https://apple.github.io/foundationdb/
66. Amazon Simple DB documentation, https://aws.amazon.com/simpledb/
67. VoltDB: Stonebraker, M., Madden, S., & Abadi, D. J. (2013). VoltDB: an open-source relational database system for large-scale, complex

systems. ACM SIGMOD Record, 42(1), 22-27.
68. Amazon S3 documentation, https://aws.amazon.com/s3/
69. Redis Cluster documentation, https://redis.io/topics/cluster-tutorial
70. Presto documentation, https://prestodb.io/docs/current/
71. Apache Iceberg documentation, https://iceberg.apache.org/
72. Google Cloud Bigtable documentation, https://cloud.google.com/bigtable/docs/
73. AWS Elasticache for Redis: https://aws.amazon.com/elasticache/redis/
74. Microsoft Azure SQL Database: https://azure.microsoft.com/en-us/services/sql-database/
75. OceanBase by Alibaba Cloud: https://www.alibabacloud.com/product/oceanbase
76. BlazingSQL: https://blazingsql.com/
77. MapD/OmniSciDB: https://www.omnisci.com/
78. Kinetica: https://www.kinetica.com/
79. BrytlytDB: https://www.brytlyt.com/
80. PG-Strom: https://github.com/heterodb/pg-strom
81. ZillizDB: https://github.com/zilliztech/db

https://aws.amazon.com/rds/aurora/
https://apple.github.io/foundationdb/
https://aws.amazon.com/simpledb/
https://aws.amazon.com/s3/
https://redis.io/topics/cluster-tutorial
https://prestodb.io/docs/current/
https://iceberg.apache.org/
https://cloud.google.com/bigtable/docs/
https://aws.amazon.com/elasticache/redis/
https://azure.microsoft.com/en-us/services/sql-database/
https://www.alibabacloud.com/product/oceanbase
https://blazingsql.com/
https://www.omnisci.com/
https://www.kinetica.com/
https://www.brytlyt.com/
https://github.com/heterodb/pg-strom

	Slide 1: “Redesign of Distributed Relational Databases” Perspectives after thirty years!
	Slide 2: Outline
	Slide 3: Background
	Slide 4: Distributed Database (1992) Ozsu & Valduriez
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Distributed Query Execution – high level view
	Slide 9: Distributed Database Design Problem
	Slide 10: Mixed Fragmentation Methodology
	Slide 11: Mixed fragmentation Methodology
	Slide 12: Mixed Fragments
	Slide 13: Redesign Problem
	Slide 14: Redesign Problem
	Slide 15: Materialization Problem
	Slide 16: Materialization Problem
	Slide 17: Employee
	Slide 18: Multiple Query Optimization Solution
	Slide 19: Estimating Transaction Response Time
	Slide 20: Local and Distributed Transactions
	Slide 21: Simulation Model for Lock Manager Contention
	Slide 22: Results
	Slide 23: Preventive Redesign
	Slide 24: Preventive Redesign Policy
	Slide 25: Discrete Markov Process and Redesign Policy
	Slide 26: Optimal Redesign Policy
	Slide 27: Salient Points – in 1992
	Slide 28: Design Principles of Modern Distributed Database Systems
	Slide 29: Modern Database Systems Landscape
	Slide 30: Design principles of modern distributed DBMS
	Slide 31: D1: Resource Sharing Model
	Slide 32: D1: Resource Sharing Model
	Slide 33: D2: Is physical storage optimized for querying/updates?
	Slide 34: D2: Is physical storage optimized for querying/updates?
	Slide 35: D2: Is physical storage optimized for querying/updates?
	Slide 36: D3: Distribution Transparency
	Slide 37: D3: Distribution Transparency
	Slide 38: D3: Distribution Transparency
	Slide 39: D3: Distribution Transparency
	Slide 40: D3: Distribution Transparency
	Slide 41: D4: Storage and Compute Separation
	Slide 42: D4: Storage and Compute Separation
	Slide 43: D5: Storage Compute Capability
	Slide 44: D5: Storage Compute Capability
	Slide 45: D5: Storage Compute Capability
	Slide 46: D5: Storage Compute Capability
	Slide 47: Summary
	Slide 48: Relook Distributed Database Design Circa 2023
	Slide 49: Parallel Query Execution Strategies
	Slide 50: Local Parallel, Global Distributed Architecture (LPGD)
	Slide 51: LPGD Architecture
	Slide 52: Query / Data Dependency
	Slide 53: Fragmentation and Storage Compute Capability
	Slide 54: Distributed Database Designer’s choice
	Slide 55: Summary
	Slide 56: References
	Slide 57: References
	Slide 58: References
	Slide 59: References
	Slide 60: References
	Slide 61: References
	Slide 62: References

