
Peterson’s Mutual Exclusion
Algorithm as Feedback Control

Arjun Sanjeev, Venkatesh Choppella, and Viswanath Kasturi

Abstract We present a feedback control approach to the problem of mu-
tual exclusion, using transition systems. As an example to illustrate the
idea, we consider Peterson’s mutual exclusion algorithm and model the
artefacts used in the algorithm as transition systems, the appropriate feed-
back composition of which yields the desired mutual exclusion property to
the resultant system. As we see later, the solution we build is very modu-
lar, and the dynamics can be explained with simple equational reasoning.

1 Introduction

We look at control theory and how we can apply the same to problems in
concurrency. It is a very popular design principle in engineering systems.
In the control approach, we employ additional actors along with the exist-
ing components so that they restrict the components in some well-defined
manner to achieve the target behaviour. These additional actors are called
controllers. In this context, a controller issues commands that may allow a
process to move to a new state according to its natural dynamics, or force
the process to stay in the same state. For example, a process which wants
to execute its critical section may not be allowed by the controller to do so,
possibly because of some other process executing the critical section. At the
same time, the controller should also take care it does not put too much
restriction on the processes. It is this approach that we wish to explore in
this paper.

We describe the mutual exclusion problem using a novel method of for-
mally specifying any given problem. The objective of this paper is to use
feedback control to solve the problem of mutual exclusion. Feedback control
is a very popular design principle which forms the foundation of much of

IIIT Hyderabad, Telangana, India

1



2 Arjun Sanjeev, Venkatesh Choppella, and Viswanath Kasturi

engineering science. In this work, we model all actors in the form of tran-
sition systems. We employ a centralised hub controller that issues control
inputs to the processes, thus controlling their behaviour. This becomes
feedback control as the controller also gets continuous knowledge about the
behaviour of the processes in the form of inputs. Thus, the state update of
the processes becomes completely dependant on the feedback loop.

In our model, the first and the foremost task is to get the architecture
right. The ingenuity of the approach lies in how the various components are
composed with each other. After wiring the actors together using appropri-
ate logic, we go ahead and define the dynamics of each block, including the
control law1.

The most important advantage of the compositional approach is to en-
able us to think of the system in a modular way, emphasising the interfaces
between the components and how they are interconnected. The modularity
in architecture also makes the proofs modular.

Apart from modularity, another important property of composition of
systems is that of the assume-guarantee[5]. Each component follows the
assume-guarantee that if it is provided with inputs that satisfy certain
properties, then its outputs will also satisfy certain other properties. It is
interesting to note that when two components A and B are composed in
our model, A implicitly discharges B’s assumptions on its inputs as A’s
outputs satisfy those assumptions. Thus, the composition of A and B to-
gether satisfies the properties satisfied by B’s outputs when it is a stan-
dalone component.

To demonstrate the effectiveness of the idea, we consider Peterson’s
algorithm[12]. The reason why we choose the algorithm over other mutual
exclusion algorithms is the fact that it has a very simple structure, and a
relatively easy proof. We model the algorithm using feedback composition
of various systems and prove its correctness using the dynamics. As we will
see later, it is a good example where the dynamics require the knowledge of
not just the current state of the processes, but also depends on the deriva-
tive in the sense that it depends on two consecutive values.

2 Transition Systems

A transition system (TS) is a six-tuple 〈X,X0, U, f, Y, h〉. The symbols can
be explained as follows:

1. X is a set called the state space. 2. X0 is a subset of X called the set
of initial states. 3. U is a finite set called the set of inputs. 4. −→ ⊆ X×U×X
is called the transition relation. If (x, u, x′) ∈−→ we shall write x

u−→ x′.

1 The transition function of the controller is called the ‘control law’.



Peterson’s Mutual Exclusion Algorithm as Feedback Control 3

5. Y is a set called the output space. 6. h : X −→ Y is a map called the
output map (or ‘view’).

We assume that there are no blocked states, i.e., for every x ∈ X, ∃ u ∈
U , x′ ∈ X such that x

u−→ x′. When U is a singleton we write U = {∗}
and in place of x

∗−→ x′ we simply write x −→ x′. When the system is
transparent its state becomes its output. In other words, Y = X and h =
IX (identity function on X).

2.1 Runs and Traces

We briefly describe the concepts of runs, fair runs and traces. A run is an
infinite sequence of the form

x0
u0−→ x1

u1−→ x2
u2−→ . . .

where xi ∈ X for all i and x0 ∈ X0. A run is said to be fair if each u ∈ U
occurs infinitely often in the run.

The trace of the above run is the infinite sequence (h(x0), h(x1), h(x2), . . .).
A trace is said to be fair if it is the output of a fair run.

2.2 Specification

We express the specification of a problem in the following terms.
We are given a set Z as the observable space. Let Zω denote the space of

infinite sequences with entries from Z.
Problem specification: Let a subset O of Zω be given. Construct a

non-trivial transition system with output space Y = Z such that the set of
fair traces is contained in O.

We do not define the word ‘non-trivial’, as in any problem a trivial solu-
tion can be recognised easily.

3 Mutual Exclusion

In concurrent programming, a critical section is the part of a program that
accesses shared resource(s). The property of mutual exclusion requires
that no two concurrent processes execute their critical sections at the same
time, and is done to prevent race conditions.

In this section, we model a process in the form of a transition system,
describe informally the conditions to be satisfied for mutual exclusion, fol-
lowed by a formal specification of the problem.



4 Arjun Sanjeev, Venkatesh Choppella, and Viswanath Kasturi

3.1 Process as Transition System

With respect to the critical section, each process can be in one of four
states:

Thinking The process is not interested in the critical section, and is working on
its own outside the critical section.

Hungry The process wants to enter the critical section, but it is still outside the
critical section.

Eating The process is executing the critical section.
Full 2 The process is exiting the critical section after execution, but it is

still inside the critical section.

Fig. 1 Process states and transitions.

The four states - thinking (t),
hungry (h), eating (e) and full (f)
- form the abstraction over the ac-
tual state of a process, and can be
called the activity of the process.
We define the activity set Act as
Act = {t, h, e, f}. Now we can de-
fine a process as a transition sys-
tem as described below:

1. X = Act = {t, h, e, f}.
2. X0 = {t}. 3. U = {∗}.
4. −→ is defined as x → next(x),

where next : Act −→ Act is
defined by the following transi-
tions: (fig. 1)

next(t) = t or h, next(h) = e, next(e) = e or f, next(f) = t
5. Y = X. 6. h = IX .

3.2 Problem Statement

We are interested in the case of two concurrent processes accessing shared
resource(s). Each process evolves by its own iteration. We want to impose
the constraint of mutual exclusion on their co-evolution by requiring that
not both of them are in their critical sections at the same time.

We must also ensure that the constraint is not overly restrictive. This
means that two properties essentially need to be satisfied:

2 In the context of the problem of dining philosophers, which is a more general version of
the problem of mutual exclusion, it is customary to have only the three states thinking,

hungry, and eating. It seems logical to us to add the fourth state ‘full’ for the sake of

convenience, as we will see later.



Peterson’s Mutual Exclusion Algorithm as Feedback Control 5

1. No deadlock: There should be no situation where neither process can
move forever, one which may arise when each process waits for a re-
source held by each other.

2. No starvation: If a process wants to enter the critical section, it should
not be denied the access because of the other process having higher
priority.

To avoid the situation where a process waiting for the shared resources
get blocked infinitely, we make an assumption that once a process enters its
critical section, it should leave the section in finite time.

3.3 Formal Specification of the Problem

Let Zω = (Act× Act)ω be the set of all infinite sequences with entries from
Z = Act×Act, the observable space. Consider two concurrent processes PA

and PB , whose states are xA and xB , respectively.
The assumption that a process stays in the critical section only for a fi-

nite time can be written as follows:

• If xmA ∈ {e, f} for some m, then ∃ n > m such that xnA = t.
• If xmB ∈ {e, f} for some m, then ∃ n > m such that xnB = t.

The problem is to construct a non-trivial transition system with output
space Y = Z = Act × Act, such that the set of all fair traces is contained
in O ⊆ Zω. The set O is such that the traces in O satisfy the following
conditions:

C1 (x0A, x
0
B) = (t, t).

This is the ‘initial’ condition.
C2 For any m > 0 such that (xmA , x

m
B ) 6= (t, t), ∃ n > m such that

(xnA, x
n
B) 6= (xmA , x

m
B ).

This is the ‘no deadlock’ condition.
C3 For any m > 0 such that xmA = h, ∃ n > m such that xnA = e (same for

xB).
This is the ‘no starvation’ condition. This is a special case of a ‘progress’
(or ‘liveness’) condition.

C4 (xnA, x
n
B) /∈ {e, f} × {e, f} for all n > 0.

This is the ‘mutual exclusion’ condition. This is a special case of a
‘safety’ condition.



6 Arjun Sanjeev, Venkatesh Choppella, and Viswanath Kasturi

4 Peterson’s Algorithm

In simple terms, Peterson’s algorithm can be explained as follows. When a
process wants to enter the critical section, it makes its intention public by
setting its flag variable. At the same time, it also courteously gives priority
to the other process by setting the turn variable to the other process. A
process can enter its critical section if the other process does not want to
enter its critical section, or if the latter has given priority to the former to
do so. The processes unset their flag variables after exiting from the critical
section.

Fig. 2 The interconnect between the pro-

cesses and the variables, along with the hub
controller.

Consider two concurrent pro-
cesses PA and PB under execution.
We want to make sure that not
both PA and PB are in their criti-
cal sections at any given time. As
in the original version of the algo-
rithm, we have two flag variables -
FA and FB - and one turn variable
- T . The processes have write ac-
cess to the respective flags and the
turn variable. In order to solve the
mutual exclusion problem by us-
ing Peterson’s algorithm, we model
both the systems, as well as the
flag and turn variables as transi-
tion systems, and connect them
together with a hub controller H.
The controller reads the states of the flags and turn, and sends binary con-
trol inputs to the processes - 0 to stay in the same state, and 1 to switch to
the next state - hence controlling the behaviour of the processes, while also
ensuring mutual exclusion.

4.1 Components as Subsystems

In this section, we model different components of the algorithm as subsys-
tems and describe how the subsystems are connected to each other.

4.1.1 The processes

The process system PK (where K ∈ {A,B}) takes the output of hub H as
input, and sends its outputs to FK and T .



Peterson’s Mutual Exclusion Algorithm as Feedback Control 7

Its state is a pair (xold, xnew), where xnew is the actual current state of
the process, and xold is its state in the previous iteration. This is done so
that it can send appropriate values to FK and T depending on its state
change. If the state changes from t −→ h (i.e., it wants to enter the CS), it
sets its flag and turn by sending 1 to both. If the state changes from e −→
f (i.e., exiting the CS), it unsets its flag by sending 0 to FK . In all other
cases, it sends ⊥ (to do nothing) to the systems. It receives binary control
input from H: 0 to stay in the same state, 1 to switch to the next state.

1. X = Act×Act. 2. X0 = {(t, t)}. 3. U = B.
4. −→ takes the state (xold, xnew), control input c, and computes the new

state (x′old, x
′
new) as follows:

(xold, xnew)
c−→ (x′old, x

′
new)

where
(x′old, x

′
new) = (xnew, next(xnew)), if c = 1

= (xnew, xnew), otherwise
Note: According to the above, we define a function gK (where K ∈
{A,B}) as follows:

x′K = gK(xK , cK)
where xK is the actual state of a process PK , and cK is the control in-
put.

5. Y = {0, 1,⊥} × {1,⊥}.
6. h is the view function that is defined as given below:

h(xold, xnew) = (setflag, setturn)

= (1, 1), if xnew = h ∧ xold = t

= (0,⊥), if xnew = f ∧ xold = e

= (⊥,⊥), otherwise
Note: According to the above, we define a function dK (where K ∈
{A,B}) as follows:

(set′flagK , set
′
turnK) = dK(xK , x

′
K)

where setflagK is the signal to FK from PK to set/unset the flag, and
setturnK is the signal to T to set the turn.

4.1.2 The flag variables

The flag system FK (where K ∈ {A,B}) takes the output of PK as input,
and sends its output to H.

It has binary state: 1 if PK wants to enter CS, 0 otherwise. It can receive
0 (to unset the flag), 1 (to set the flag) or ⊥ (to do nothing) from PK as
input. Its output is the same as its state.

1. X = B. 2. X0 = {0}. 3. U = {0, 1,⊥}.
4. −→ takes the state flag, input u, and computes the new state flag′ as

follows:



8 Arjun Sanjeev, Venkatesh Choppella, and Viswanath Kasturi

flag
u−→ flag′

where
flag′ = flag, if u = ⊥

= u, otherwise
Note: According to the above, we define a function fK (where K ∈
{A,B}) as follows:

flag′K = fK(flagK , set
′
flagK

)
where flagK is the state of FK (i.e., the flag), and setflagK is the sig-
nal to FK from PK to set/unset the flag.

5. Y = X. 6. h = IX .

4.1.3 The turn variable

The turn system T takes the outputs of PA and PB as inputs, and sends its
output to H.

Its state is one among A or B, indicating which among PA and PB has
priority. Its initial state is set to A, but it is irrelevant and can as well be
B. It receives 1 (to give priority to the other process) or ⊥ (to do nothing)
from each process. If it receives 1 from only one process, the priority goes
to the other process. If both processes send 1, by design, we make sure that
only one will be considered, thus forcing strict alternation. (A ⊕ B selects
A or B depending on the system’s hardware.) If both processes send ⊥, the
state stays the same. Its output is the same as its state.

1. X = {A,B}. 2. X0 = {A}. 3. U = {1,⊥} × {1,⊥}.
4. −→ takes the state turn, inputs (setA, setB), and computes the new

state turn′ as follows:

turn
(setA,setB)−−−−−−−→ turn′

where
turn′ = A⊕B, if setA = 1 ∧ setB = 1

= B, if setA = 1

= A, if setB = 1

= turn, otherwise
Note: According to the above, we define a function t as follows:

turn′ = tn(turn, set′turnA, set
′
turnB)

where turn is the state of T (i.e., the turn), and setturnA and setturnB

are the set signals to T from PA and PB , respectively.
5. Y = X. 6. h = IX .



Peterson’s Mutual Exclusion Algorithm as Feedback Control 9

4.1.4 The hub controller

The hub controller system H takes the outputs of FA, FB and T as inputs,
and sends the control inputs to the PA and PB .

Its state is a binary pair, which are the control inputs to PA and PB . By
receiving the binary flags from FA and FB , as well as the turn from T , it
decides control inputs: 0 to force the process to stay in the same state, and
1 to allow to move to the next state. Its output is the same as its state.

1. X = B× B. 2. X0 = {(1, 1)}. 3. U = B× B× {A,B}.
4. −→ takes the state (cA, cB), inputs (flagA, f lagB , turn), and computes

the new state (c′A, c
′
B) as follows:

(cA, cB)
(flagA,flagB ,turn)−−−−−−−−−−−−→ (c′A, c

′
B)

where
c′A = 0, if flagA = 1 ∧ flagB = 1 ∧ turn = B

= 1, otherwise

c′B = 0, if flagB = 1 ∧ flagA = 1 ∧ turn = A

= 1, otherwise
Note: According to the above, we define a function h as follows:

(cA, cB) = hc(flagA, f lagB , turn)
where turn is the state of T (i.e., the turn), and flagA and flagB are
the states of FA and FB (i.e., the flags), respectively.

5. Y = X. 6. h = IX .

4.2 Dynamics of the Composite System

Let xA and xB be the states of processes PA and PB , respectively. Let
setflagA and setflagB be the signals to flags sent by the processes PA and
PB , respectively, and let flagA and flagB be the outputs from the flag sys-
tems FA and FB . Let setturnA and setturnB be the set signals sent by the
processes PA and PB to turn system T , respectively. Let turn be the out-
put of T which goes to the controller H. Let cA and cB be the control in-
puts sent by the controller H to the processes PA and PB , respectively. All
labelling is done in fig. 2.

Interconnecting all the systems (PA, PB , FA, FB , T and H) with each
other, we get the following equations that describe the dynamics of the
composite system:

x0A = t, x0B = t, set0flagA = ⊥, set0flagB = ⊥
set0turnA = ⊥, set0turnB = ⊥, turn0 = A

flag0A = 0, f lag0B = 0



10 Arjun Sanjeev, Venkatesh Choppella, and Viswanath Kasturi

(cA, cB) = hc(flagA, f lagB , turn) (1)

x′A = gA(xA, cA) (2)

x′B = gB(xB , cB) (3)

(set′flagA, set
′
turnA) = dA(xA, x

′
A) (4)

(set′flagB , set
′
turnB) = dB(xB , x

′
B) (5)

flag′A = fA(flagA, set
′
flagA

) (6)

flag′B = fB(flagB , set
′
flagB

) (7)

turn′ = tn(turn, set′turnA, set
′
turnB) (8)

All variables are initialised with values depending on the system initial-
isations. The hub controller moves first by computing the pair of control
inputs (cA, cB) by using flagA, flagB and turn which it receives as in-
puts (eq. (1)). PA and PB move next by changing their states according
to eq. (2) and eq. (3), thus computing x′A and x′B , respectively. Based on
the updated states x′A and x′B , the processes compute the signals set′flagA
and set′flagB to set/unset the flag variables, and set′turnA and set′turnB to

set the turn variable using eq. (4) and eq. (5). After receiving the respec-
tive signals, flag′A, flag′B and turn′ are computed by systems FA, FB and
T , using eq. (6), eq. (7) and eq. (8), respectively. The system T updates its
state to turn′ and sends the same to the controller H. The flag systems FA

and FB also send their updated states to the controller H, and the process
continues.

4.3 Proof of Correctness

Let X denote the state space of the composite system, i.e.,
X = PA.X × PB .X × FA.X × FB .X × T.X ×H.X

We are skipping the input space of the composite system as it is too cum-
bersome to describe, and is left for the reader to figure out.

Let the state of each system be represented as follows:
PA.x = (xAold, xAnew), PB .x = (xBold, xBnew),

T.x = turn, FA.x =flagA, FB .x = flagB ,

H.x =(cA, cB)

We define the observation map τ : X −→ Act×Act as
τ((xAold, xAnew), (xBold, xBnew), f lagA, f lagB , turn, (cA, cB)) = (xAnew, xBnew)

Let T denote the set of all fair traces of X starting with ((t, t), (t, t), 1, 1, A, (1, 1)).
To prove the solution, we need to show that the traces in T map into O,
i.e., satisfy the formal specifications mentioned.

In this paper, we just briefly prove the mutual exclusion property, i.e.,
condition C4, and give short sketches of the proofs of other conditions. We



Peterson’s Mutual Exclusion Algorithm as Feedback Control 11

have verified the correctness of the model using TLC, the TLA+ model
checker. The complete proof will be done in an upcoming thesis.

Before we move to the proof, we prove the following lemma:

Lemma 1. For K ∈ {A,B}, xnK ∈ {h, e} ⇐⇒ flagnK = 1.

Proof. As is seen from the process dynamics, the flag variable of a process
gets set and unset only when the process moves from t to h and e to f , re-
spectively. Hence, when the process is in state h or e, its flag will be 1 and
when it is in state t or f , the flag will be 0.

Theorem 1 (C1). (x0A, x
0
B) = (t, t).

Proof. This is true because of the way we have initialised the traces.

Theorem 2 (C2). For any m > 0 such that (xmA , x
m
B ) 6= (t, t), ∃ n > m

such that (xnA, x
n
B) 6= (xmA , x

m
B ).

Proof. An intuitive reasoning about the proof is that at least one among
cA and cB is set to 1 at any time in the execution (from eq. (1)), which
means that at least one among processes PA and PB always moves using
next. Hence, the state changes as follows: h to e and f to t in a single step
(according to fig. 1), and e to t in a finite number of steps (due to assump-
tion).

Theorem 3 (C3). For any m > 0 such that xmA = h, ∃ n > m such that
xnA = e (same for xB).

Proof. Consider the process PA. Let xmA = h, which means flagmA = 1.
If xmB ∈ {t, f} =⇒ flagmB = 0 (from lemma 1) =⇒ cmA = 1 (from

eq. (1)) =⇒ xm+1
A = e (from eq. (2)).

If xmB = e =⇒ ∃ n > m such that xnB = t, where n is the smallest such
number (from assumption) =⇒ xn−1B = f (from eq. (3)) =⇒ flagn−1B = 0
(from lemma 1) =⇒ cn−1A = 1 (from eq. (1)) =⇒ xnA = e (from eq. (2)).

Similarly it can be proved for the case of xmB = h.

Theorem 4 (C4). (xnA, x
n
B) /∈ {e, f} × {e, f} for all n > 0.

Proof. Let us assume that at some point of time, both processes are in the
critical section. Let n be the first m for which xmA ∈ {e, f} ∧ xmB ∈ {e, f},
which means that xnA ∈ {e, f} ∧ xnB ∈ {e, f} and ∀i < n, xiA /∈ {e, f} ∨ xiB /∈
{e, f}.

1. Case 1: At n− 1, both processes are outside the critical sections.



12 Arjun Sanjeev, Venkatesh Choppella, and Viswanath Kasturi

xn−1A /∈ {e, f} ∧ xn−1B /∈ {e, f}
xn−1A /∈ {e, f} ∧ xnA ∈ {e, f} =⇒ xn−1A = h ∧ cn−1A = 1 (From eq. (2))

xn−1B /∈ {e, f} ∧ xnB ∈ {e, f} =⇒ xn−1B = h ∧ cn−1B = 1 (From eq. (3))

xn−1A = xn−1B = h =⇒ flagn−1A = flagn−1B = 1
(From lemma 1)

=⇒ cn−1A = 0 ∨ cn−1B = 0 (From eq. (1))

=⇒ Contradiction
2. Case 2: At n − 1, one of the processes (say PB) is outside the critical

section, i.e.,
xn−1A ∈ {e, f} ∧ xn−1B /∈ {e, f}

xn−1B /∈ {e, f} ∧ xnB ∈ {e, f} =⇒ xn−1B = h ∧ cn−1B = 1 (From eq. (3))

=⇒ flagn−1B = 1 (From lemma 1)

a. Subcase 1: cn−1A = 1
If xn−1A = f , then xnA = t. Therefore, xn−1A cannot be f .

xn−1A = e =⇒ flagn−1A = 1 (From lemma 1)

flagn−1A = flagn−1B = 1 =⇒ cn−1A = 0 ∨ cn−1B = 0 (From eq. (1))

=⇒ Contradiction

b. Subcase 2: cn−1A = 0
i. xn−1A = f

=⇒ flagn−1A = 0 (From lemma 1)

=⇒ cn−1A = 1 (From eq. (1))

=⇒ Contradiction

ii. xn−1A = e
=⇒ flagn−1A = 1 (From lemma 1)

Also, turn = A (By careful analysis)

flagn−1A = 1 ∧ flagn−1B = 1 ∧ turn = A =⇒ cn−1A = 1
(From eq. (1))

=⇒ Contradiction

Thus, it is not possible that xnA ∈ {e, f} ∧ xnB ∈ {e, f} for any n. Hence
proved.

5 Related Work

There have been many works on the problem of mutual exclusion, the first
one being by Dijkstra[7]. Among the few important ones that followed are
Dekker’s algorithm[8], Peterson’s algorithm[12], Lamport’s algorithm[11],
etc. In this paper, we have chosen Peterson’s algorithm for detailed analy-



Peterson’s Mutual Exclusion Algorithm as Feedback Control 13

sis. Following are some of the ways in which the algorithm has been mod-
elled in the literature.

There are many works that focus on improving the efficiency of the orig-
inal algorithm. Block et al.[4] present a solution that improves the number
of operations in the case of n processes competing for the critical section
(the generalised version of the algorithm). A simple modification to the
same is made by Alagarsamy[1] to bring a further minor improvement. As
we are interested in the architecture aspect and not the efficiency, we do
not go deeper into such works.

Reisig[13] uses Petri Nets to model the algorithm. Vaziri et al.[14] model
the algorithm in Promela and do model checking using SPIN. Cicirelli et
al.[6] model the algorithm using UPPAAL toolbox. Calculus of Commu-
nicating Systems (CCS) has been used by Dyseryn et al.[9] for modelling.
However, none of them talk about modular composition of smaller compo-
nents and equational proofs.

An approach that is closely related to ours is that of Attiogbe[3] in which
he specifies several subsystems compose them to achieve mutual exclusion
using Event B. His work differs from ours in that each subsystem is mod-
elled as an abstract system, and not as a transition system, where there are
‘events’ in each abstract system that cooperate to achieve a task. Also, the
ideas of feedback control as well as equational reasoning are not used. The
same hold true for the event-based approach used by Ivanov et al.[10] in
which several events are ordered using precedence relations and Peterson’s
algorithm is modelled and proved.

Another related approach is used by Arnold[2] where he uses transition
systems to model processes and has the similar notion transitions repre-
senting the state change of processes. But the interaction between pro-
cesses, or how multiple processes are composed to each other to form the
bigger system is not explained. Feedback control is not used.

6 Conclusion

The main objective of this paper is to show how we can systematically ap-
ply the idea of transition systems and composition in the form of feedback
loop to solve the mutual exclusion problem, for which we chose Peterson’s
algorithm for demonstration. The result is a very modular solution with
interconnected components, whose dynamics can be explained by simple
equational reasoning. Therefore, the transition systems approach is effec-
tive, and is a promising direction to explore. We look forward to applying
the idea to more such examples in the future.



14 Arjun Sanjeev, Venkatesh Choppella, and Viswanath Kasturi

References

[1] Alagarsamy K (2005) A mutual exclusion algorithm with optimally
bounded bypasses. Information Processing Letters 96(1):36–40

[2] Arnold A (1989) Mec: a system for constructing and analysing transi-
tion systems. In: International Conference on Computer Aided Verifi-
cation, Springer, pp 117–132

[3] Attiogbé JC (2005) A stepwise development of the petersons mutual
exclusion algorithm using b abstract systems. In: International Confer-
ence of B and Z Users, Springer, pp 124–141

[4] Block K, Woo TK (1990) A more efficient generalization of peterson’s
mutual exclusion algorithm. Information Processing Letters 35(5):219–
222

[5] Chilton C, Jonsson B, Kwiatkowska MZ (2012) Assume-guarantee rea-
soning for safe component behaviours. In: FACS, Springer, vol 12, pp
92–109

[6] Cicirelli F, Nigro L (2016) Modelling and verification of mutual exclu-
sion algorithms. In: Distributed Simulation and Real Time Applica-
tions (DS-RT), 2016 IEEE/ACM 20th International Symposium on,
IEEE, pp 136–144

[7] Dijkstra EW (1965) Solution of a problem in concurrent programming
control. In: Pioneers and Their Contributions to Software Engineering,
Springer, pp 289–294

[8] Dijkstra EW (1968) Cooperating sequential processes. In: The origin
of concurrent programming, Springer, pp 65–138

[9] Dyseryn V, van Glabbeek R, Höfner P (2017) Analysing mu-
tual exclusion using process algebra with signals. arXiv preprint
arXiv:170900826

[10] Ivanov I, Nikitchenko M, Abraham U (2015) Event-based proof of the
mutual exclusion property of petersons algorithm. Formalized Mathe-
matics 23(4):325–331

[11] Lamport L (1987) A fast mutual exclusion algorithm. ACM Transac-
tions on Computer Systems (TOCS) 5(1):1–11

[12] Peterson GL (1981) Myths about the mutual exclusion problem. Infor-
mation Processing Letters 12(3):115–116

[13] Reisig W (1995) Correctness proofs of distributed algorithms. Theory
and Practice in Distributed Systems pp 164–177

[14] Vaziri M, Holzmanny G (1998) Automatic generation of invariants in
spin. Proc of the Int SPIN Work(SPIN98)


