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Abstract—Software is finding place in deeply embedded sys-
tems to large scale distributed systems of cloud service providers
such as Amazon and Google. Due to the concurrent and dis-
tributed nature of this software, it is hard to test for correctness of
such systems in a foolproof manner. Explicit state model checking
is an approach in which we build a model of the system and
specify the properties it should hold. Then we construct a state
transition system from the model and check if it satisfies the
specified properties. There are two kinds of properties of interest:
safety and liveness. In this paper, we focus our attention on
safety verification, which involves checking if the states that are
generated in the transition system satisfy some predicate formulae
specified in the form of assertions. The main problem here is that
the number of states in the transition system grows exponentially
with the number of bits required to store the state of a model
at any given point time. So the available main memory even
in a server class machine is not sufficient to model check non-
trivial practical models. One approach to address this problem is
by using resources from a distributed collection of machines. In
this paper, we adopt this approach, by proposing a distributed
safety property verification algorithm using the vertex centric
programming model.

I. INTRODUCTION

Since the past decade, there has been widespread adoption
of ICT technologies in domains such as health care, automo-
biles, mass transit systems etc. The hardware and software
systems developed for such domains need to be reliable, as
any unexpected behaviour potentially leads to both monetary
and human loss. We can use rigorous software engineering
principles during the design, development and testing phases
in order to increase the reliability of the built systems. In spite
of this, due to the inherent complexity of these systems and
human involvement in building such systems, no guarantees
can be made about their correctness. However, we can use
automated formal verification and model checking tools to
identify bugs early in the design cycle and thereby gain more
confidence on the system with exhaustive coverage. Such tools
are not only useful in real time embedded system applications
but also in large enterprise and cloud services companies such
as Amazon which use complex distributed algorithms in their
backend infrastructure [1].

A. Explicit State Model Checking

In model checking, we first build a model of the system un-
der consideration using a modeling language such as Promela
[2]. The system can be a distributed algorithm [3], a network
protocol [4] or a hardware design [5]. Then we specify the
property to be verified either within the model description
itself as assertions or separately with Linear Temporal Logic
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Fig. 1: Overview of the model checking process.

(LTL) formulae. Then a model checker such as SpinJa [6]
takes the model description and the property to be checked to
generate a verifier. The generated verifier, in the case of SpinJa,
is a Java file which when interpreted checks if the model
satisfies the specified property by systematically exploring
the underlying state transition system corresponding to the
model. In case of any violation, it generates a trace which
can be used to do a guided simulation to identify the cause
of violation. Figure 1 depicts the complete verification process
that is typically followed.

There are broadly two types of properties that we are
interested in model checking: safety and liveness checks.
Intuitively, safety properties say that nothing bad ever happens
and liveness properties indicate that something good eventually
occurs. For example, in an algorithm for mutual exclusion, a
safety property would be that at any point of time, no more
than one process is in the critical section. Whereas a liveness
property would be that every process which attempts to enter
the critical section will eventually do so. Figure 2 shows the
Promela model specification for the Peterson’s algorithm. The
safety properties are specified using either inline assertions
or global state invariants using simple LTL formula such as
�(mutex!=2). This means in every state of the transition
system the predicate (mutex!=2) has to be true. Specification
of liveness properties usually requires more complex LTL
formulae and is out of the scope of this paper.

Given a Promela model M , a model checker constructs
a state transition system TM = (S,Act,→, I, L,AP ). The
transition system can start in any of the initial states from
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I and move from one state to another in S as a result of
the actions performed from the set Act in accordance with
the edge transition relation →⊆ S × Act × S. AP is the
set of atomic propositions and L : S → 2AP is a labeling
function which associates with every state the set of atomic
propositions valid in that state. We say that a state s ∈ S
satisfies a predicate φ, denoted as s |= φ, if and only if
L(s) |= φ. Each state of the transition system is a snapshot
of the Promela model in execution and the transition system
completely captures all possible behaviours of the Promela
model across various execution runs. For example, in the
Peterson’s mutual exclusion algorithm [7] from Figure 2,
each state contains the current values of the global variables,
program counter values for the processes A and B, and the
value of their local variables.

A safety check algorithm systematically generates all the
possible reachable states in a transition system either in a
breadth-first search or a depth-first search manner. Safety as-
sertion checks are performed as and when they are encountered
or on all the states of the system based on user specification.
If the number of bits required to encode a state is b, then there
are 2b distinct possible states, although all of them may not be
reachable. So the total number of states in the underlying state
transition system can grow exponentially with the increase
in the model complexity. This is the main bottleneck in the
practical application of model checking. For real models of
practical interest, the number of generated states are so large
that they cannot be stored in the main memory of even high end
machines. This is called as the state space explosion problem.

In this paper, we show how we can address this problem us-
ing the compute and memory resources in a distributed cluster
of machines. Although there are prior efforts in this direction
[8], [9], [10], [11] the novelty of our work comes from using
distributed vertex centric graph processing frameworks such
as Giraph [12]. The programming model provided by Giraph
makes the design of our distributed model checker easier.
Further, other necessary properties required while solving large
distributed problems such as scalability and fault-tolerance are
naturally provided by such frameworks as against custom built
distributed applications using primitive tools such as Message
Passing Interface.

The following is the brief outline of the rest of the paper.
In Section II, we provide the necessary background on vertex
centric graph processing frameworks. The architecture and
the implementation details of our distributed safety checking
algorithm is presented in Section III. In Section IV, we present
experimental results and conclude in Section VI.

II. VERTEX CENTRIC COMPUTING MODEL

A graph is a versatile mathematical object which can
be used to represent diverse real world structures such as
World Wide Web, social networks, geographical maps etc.
In the context of model checking, a state transition system
can be viewed as a directed graph. We can infer many
application specific properties from its corresponding graph
representation by performing algorithms such as reachability,
shortest path, max-flow etc. However, the size of graphs such
as web graph is so large that they do not fit into the main
memory of even a server class machine and has to be stored

#define A_TURN 0
#define B_TURN 1

bit x, y;
byte mutex;
byte turn;

active proctype A() {
x = 1;
turn = B_TURN;
y == 0 || (turn == A_TURN);
mutex++;
assert(mutex != 2);
mutex--;
x = 0;

}

active proctype B() {
y = 1;
turn = A_TURN;
x == 0 || (turn == B_TURN);
mutex++;
assert(mutex != 2);
mutex--;
y = 0;

}

Fig. 2: Promela model specification for the Peterson’s mutual
exclusion algorithm.

using distributed secondary storage structures. Even if we
can do streaming computation to overcome the main memory
limitations, moving data across network is way too expensive.
So it makes sense to use a map-reduce kind of computational
framework for scalable distributed processing of large graphs.
However, graph algorithms are not easily amenable to map-
reduce framework.

In this context, vertex centric computing frameworks such
as Pregel [13] and Giraph [12] are useful from algorithmic
design perspective because they are accompanied with suitable
programming models. Since, we used Giraph in our experi-
mental work, we refer to it more specifically in subsequent
discussion. In Giraph, computations on a graph happen in
rounds. In each round, every active vertex performs local
computations independent of others. The input to a local
computation is the current local state at the vertex and the
incoming messages from its predecessor nodes in the graph.
The local computations can change the state of the vertex
and potentially send some outgoing messages to the successor
nodes. Each round of computation is called a super-step and
computations across all the vertices are synchronized at the end
of each super-step. The computations come to a halt when there
are no more active vertices. An abstract Giraph computation is
realised by a collection of worker threads running on a cluster
of machines. Every vertex in the graph is assigned to a worker
and does its computation in the corresponding worker context.
This induces a canonical partition on the set of all vertices.

We illustrate the vertex centric graph computational model
of Giraph using the shortest path computation algorithm as
applied on the graph in Figure 3. In this algorithm, each vertex
maintains a current estimate of the shortest path from the
source vertex. In Figure 4, the value in the square bracket
below each vertex reflects the local state of the corresponding
vertex and it shows the current estimate of the shortest path
length. The vertices are divided into two partitions {v0, v1}
and {v2, v3}. Each partition is assigned to a worker thread.
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Fig. 4: Illustration of the shortest path computation from the source vertex v1 for the graph in Figure 3 using the Giraph
computational model. Labels on the arrows indicate the payload of the communication from one vertex to another.

Fig. 3: Example graph to illustrate the shortest path computa-
tion from vertex v1 using Giraph.

The worker threads can be co-located on the same machine or
can be assigned different machines. In superstep-0, only vertex
v0 is active and it sends messages to the successor vertices v2
and v3. They become active in the next round and carry on
the computation. Every active vertex in each stage, updates
its shortest path estimate based on the incoming messages.
Finally, after the superstep-4, no vertices are active and the
computation comes to halt finishing the execution.

III. DISTRIBUTED SAFETY CHECKING

Let TM = (S,Act,→, I, L,AP ) be a transition system
associated with a model M . An execution run in the transition
system is an infinite sequence of states s0 → s1 → s2 → · · ·
such that (si, si+1) is a valid transition for all i ≥ 0.
L(s0)L(s1)L(s2) · · · is the trace obtained from such an ex-
ecution run by projecting the corresponding state labels. We
say that an execution run satisfies a safety property specified
by a predicate formula φ if ∀i ≥ 0, L(si) |= φ. We say
that a transition system satisfies a safety property φ if every
possible execution run in the transition system satisfies the
safety property. If there exists an execution run which violates

promela
model

SPINJA promela complier

SPINJA library

model verifier in java

uses

uses

Fig. 5: Overview of the SpinJa model checker flow and
architecture.

the safety property, then there exists a state si in that run
for some finite i such that L(si) �|= φ. Since the execution
run is a valid run, the state si is reachable from one of the
initial states in I . Based on this discussion, we can infer that
a safety property φ can be verified by computing the set of
reachable states in TM starting from all the initial states and
checking if each of the reachable states logically entails the
safety predicate φ.

SpinJa [14], [15] is an explicit state model checker devel-
oped in Java using an object oriented approach so that it is
easy to extend it by adding new algorithms without touching
the main code base, that is related to, for example Promela
model file parsing, next transition generation etc. Figure 5
shows the basic architecture of SpinJa. The main idea is that
any extensions to the model checker can be implemented as a
part of the SpinJa library. This makes it an attractive choice
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#define NOPROC 3 /* No of processes */
#define LC 20 /* Increment from each process */
int gc = 0;
int nrpr=0;
int noproc=NOPROC;
proctype P() {

int x=1, temp;
do
:: x > LC -> break;

// Use this line assertion violation
// :: else -> temp=gc+1; gc=temp; x=x+1;
// Use this line for no assertion violation

:: else -> gc=gc+1; x=x+1;
od;
nrpr=nrpr+1;

}
init {

int x=1;
do
:: x > NOPROC -> break;
:: else -> x=x+1; run P();
od;

(nrpr==NOPROC);
assert(gc == LC*noproc);

}

Fig. 6: Promela model simulating a Shared Counter.

public class PanModel extends PromelaModel {

public static void main(String[] args) {
Run run = new Run();
run.parseArguments(args,"Pan");
run.search(PanModel.class);

}

int gc;
int nrpr;
int noproc;

.

.
public class init_0 extends PromelaProcess {

protected int _pc;
protected int _pid;
protected int x;

.

.
}
public class P_0 extends PromelaProcess {

protected int _pc;
protected int _pid;
protected int x;
protected int temp;

.

.
}

.

.
}

Fig. 7: Partial structure of the PanModel class.

for this project as against an industry strength tool like Spin
[2] which generates the code for search algorithms also as a
part of the generated verifier.

Figure 6 depicts the Promela model which is used in our
experimental work and is explained further in Section IV.
When such a model specification is given as input to SpinJa,
it generates a Java class with the default name PanModel.
The PanModel class contains inner classes which correspond
to the processes and channels defined in the Promela model
specification. Corresponding to the global and local variables
in the model specification, there are variables declared globally
in the PanModel and the inner process classes (refer Fig-

ure 7). Further, the PanModel class contains methods which
capture the dynamics of the model using which transitions
from one state to another state can be obtained. In the
safety and liveness checking algorithms, as we explore the
state transition graph, we use the PanModel object to move
from one state to another state. The problem is that it is
too expensive to associate an object with every state of the
transition graph. So, we use serialization (encode) and de-
serialization (decode) functions to store and retrieve only the
required information in a PanModel object. During the state
transition graph exploration, for example, using the breadth
first search algorithm, only the state information is enqueued
and dequeued from the priority queue.

.

Fig. 8: Architecture of Distributed SpinJa based on Giraph.

In our architecture for distributed safety checking using
Giraph, refer 9 each state of the transition system is modelled
as a vertex in the graph. The computation associated with
every vertex involves generating the next state vertices. This
is how the transition graph gets built on-the-fly starting from
one or more initial state vertices. Since a vertex gets active
immediately in the next superstep of its creation, the transition
graph gets explored in a breadth-first search manner. Further,
since all the active vertices generate their successors simul-
taneously, the frontier of the transition graph gets expanded
in parallel, giving rise to an extremely scalable breadth-first
search exploration. During this process of graph exploration,
any assertion statements that are encountered are checked with
respect to the current state of the system.

In the centralized stand alone SpinJa version, the transition
graph is explored by considering one vertex at a time. A
vertex state is de-serialized into a PanModel object in order to
generate its next state vertices. In distributed version, instead of
maintaining one PanModel object, we maintain a concurrent
pool of PanModel objects. This concurrent pool is shared
across all the vertices assigned to the same worker using
the WorkerContext mechanism provided by Giraph. Any
active vertex can procure and release a PanModel object from
this concurrent pool for its operation.

IV. EXPERIMENTAL RESULTS

We tested the effectiveness and scalability of our dis-
tributed SpinJa [14], [15] implementation based on Giraph
framework (with Hadoop 2.4.0) using the synthetic Shared
Counter Promela model from Figure 6 and the Dining Philoso-
pher’s problem from the BEEM benchmark suite [16]. In the

111117117



Shared Counter Promela model,we can control the number of
states in the underlying state transition system by varying the
parameters NOPROC and LC. Since the only source of non-
determinism in this model is the progress of each process, the
parameter NOPROC gives the outdegree of each state in the
state transition graph. Figure 9 shows how the number of ver-
tices and edges in the transition system grows as the parameter
LC varies from 15 to 21 with the NOPROC parameter set to 4.
We are able to apply our distributed safety checking algorithm
on a transition system with 10 million vertices and 40 million
edges.

Fig. 9: Increase in vertices and edges as the LC parameters
grows in the Shared Counter model when the parameter
NOPROC is set to 4.

We performed our experiments using the Elastic Map
Reduce (EMR) infrastructure form Amazon Web Services
(AWS). Table I shows the configuration of the m3.2xlarge EC2
machines we used in our map-reduce cluster on AWS.

vCPUs 8

Memory (GB) 30

SSD Storage (GB) 2*80

TABLE I: m3.2xlarge EC2 machine Configuration.

Table II shows how the number of supersteps, time taken
and memory consumed metrics grow with the number of
vertices in the state transition system of the Shared Counter
Promela model as controlled by the LC parameter. The statis-
tics are obtained using 2 EC2 machines with 7 Giraph workers
each with 2.5 GB memory. Figure 10 shows how the number of
vertices and the time taken for safety checking grows with the
parameter LC. It can be noticed that the time taken increases
sub-linearly with the number of vertices due to the parallel
state graph exploration.

Given the same set of physical resources, the performance
of a Giraph application can change with the number of workers
and the memory allocated to each worker. Table III shows the
performance of our distributed safety checking algorithm on
the Shared Counter model (NOPROC=4, LC=15) as a function

LC Supersteps Vertices Edges Time (sec) Memory (MB)

15 144 2,559,497 11,151,040 934 6222.23

17 160 4,011,013 17,537,561 1523 7267.16

19 176 6,006,454 26,337,613 2290 8598.17

21 192 8,667,750 38,096,386 3276 10913.32

TABLE II: Summary statistics on the Shared Counter model
using 2 physical machines with 7 Giraph workers each of 2.5
GB memory.

Fig. 10: Growth of the metrics Time and Vertices with the
parameter LC in the Shared Counter model.

of the physical resources allocated, number of Giraph workers
and their memory allocation. The first observation is that the
total time taken for execution is decreasing with increase in the
memory allocated to each worker thread although the number
of worker threads are decreased. This indicates that the benefits
that we get with more main memory are better than that
of parallelism. Also, as we increase the number of physical
machines, the execution time is increasing. This is due to the
latency in communication across machines. Table V shows
analogous statistics for the Dining Philosopher’s problem with
nine philosophers and the trends are similar to that of the
Shared Counter model. Table IV shows the basic statistics like
number of supersteps, number of vertices and edges in the
state transition graph for the same. Overall, this indicates that
using our distributed model checking algorithm we may not be
able to reduce the verification time by increasing the number
of physical machines due to network latencies. However, they
would be useful to solve large problems involving millions of
state which cannot be solved using one or more small number
of machines.

V. RELATED WORK

State space explosion in explicit state model checking is
a well studied problem in the formal verification community.
The problem is worse in asynchronous paradigms due to the
extra concurrency produced by unbounded delay models. To
avoid this problem, efficient modeling techniques, symbolic
methods, abstraction and compositional reasoning have been
explored by many researchers. Clarke et al. [17] proposed state
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Memory per container
(MB)

2 Machines 3 Machines 4 Machines

Workers Time (sec) Memory (MB) Workers Time (sec) Memory (MB) Workers Time (sec) Memory (MB)

1024 20 996 8049.03 22 1857 8579.18 30 2117 8649.48

2048 10 965 6880.72 10 1826 12428.93 28 2038 13482.72

2560 7 934 6222.23 15 1801 12042.54 24 2033 16939.62

TABLE III: Performance of our distributed safety checking algorithm on the Shared Counter (NOPROC=4, LC=15) model for
various resource configurations.

Memory per container
(MB)

2 Machines 3 Machines 4 Machines

Workers Time (sec) Memory (MB) Workers Time (sec) Memory (MB) Workers Time (sec) Memory (MB)

1024 20 303 6592.61 22 498 7035.75 30 637 7962.85

2048 10 285 5163.32 10 483 11823.01 28 581 12707.62

2560 7 272 4742.17 15 461 11058.29 24 576 14283.10

TABLE V: Performance of our distributed safety checking algorithm on the Dinning Philosopher’s problem with nine philosophers
for various resource configurations.

Total Number of SuperSteps 30

Total Number of Vertices 435,518

Total Number of Edges 2,198,970

Total Number of Messages Sent 5,505,725

TABLE IV: Basic statistics for the Dinning Philosopher’s
problem with nine philosophers.

space reduction using partial order techniques by recognizing
the fact that the outcome of many independent process step
interleavings is the same. Bit-state hashing [18] using bloom
filters allows us to control the main memory consumed but
leaves parts of the state transition system unexplored due to
hash collisions. By using different hash functions in parallel,
Swarm [11] can perform parallel search on a cluster of
machines. LTSMIN [19] uses symbolic techniques for state
space reduction and also relies on distributed reachability
analysis for faster verification process. Divine [8], [9] is yet
another popular tool which used MPI framework for distributed
liveness checking. Divine-CUDA [10] attempts to port the
liveness checking algorithms onto GPU accelerators. Brim et
al. [20] proposed a liveness checking algorithm wherein we
discover an accepting cycle in a product Buchi automaton
using a series of graph transformations. The algorithm is very
much amenable for implementation in Giraph programming
model as it looks almost similar to the Dijkstra’s shortest
path algorithm. The amount of state stored in each vertex
is constant and the message size is also constant. The main
problem is that the liveness checks cannot be performed on-
the-fly in parallel with the graph exploration. Xie et al. [13]
proposed yet another liveness checking algorithm based on
Pregel framework. The main problem with their approach is
that its message complexity can be very high.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an architecture to extend the
SpinJa model checker for distributed verification of safety
properties using Giraph which supports a vertex centric pro-
gramming model. This allows us to apply explicit state model

checking on industry scale applications which contain huge
number of states in the underlying state transition model.
By using Amazon Web Services, we are able to acquire a
appropriately large map-reduce cluster for our purpose and
release it back after the computational job is over. This also
demonstrates the financial feasibility of large scale model
checking. In our future work, we would like to optimize the
cost-performance ratio by dynamically scaling the map-reduce
cluster based on the resources required and user specified
service requirements.
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