T4E 2010

Synthesizing customizable learning environments

Thulasi Ram Naidu*, Manisha Verma*, Venkatesh Choppella* and Gangadhar ChalapakaJr
*IIT Hyderabad
*Amazon Inc. Hyderabad

Abstract—Making the experience of e-learning more ef-
fective requires interactive and collaborative systems to be
adaptive and customizable. Specialized learning systems tend
to be monolithic and difficult to extend. We present an alter-
native approach, where we synthesize a customizable learning
environment from existing tools (Trac, SVN, reST, SQLite).
The system presents the student not just with content, but
an immersive experience that allows both individual and
group annotations, versioning of the student’s work, custom
querying, and a uniform markup language to store content.
We report the motivation and design of such an environment.
We demonstrate the use of this system and its ability to plug
into other environments by showcasing a custom interactive
workbook, built for teaching and learning the principles of
programming.

Keywords-information technology; e-learning; learning en-
vironments;annotations; FOSS; collaboration

I. INTRODUCTION AND MOTIVATION

Collaborative environments for immersive learning:
Learning environments today are rapidly evolving towards
the goal of providing a completely immersive experi-
ence for the learner. Collaboration is being seen as an
increasingly important aspect of learning [1]. In such
a collaborative environment, the student is not merely
a consumer of knowledge in a knowledge base, but an
active participant in a community of teachers and learners
interacting with, discovering and sharing new connections
in the knowledge network.

Problem statement: building learning environments:
This paper is about how to easily synthesize a collab-
orative learning environment. It is not about building
another learning management system from scratch. A
learning environment is different from a learning manage-
ment system, which manages the administrative process
of learning: homework submissions, deadlines, exams,
quizzes, and uploads of announcements and material from
instructors. Perhaps the most widely used example of a
learning management system is Moodle [2]. A learning
environment, on the other hand, is more about knowledge
sharing and creation and more intimately connected with
the learner and learning activities and artefacts. Several
learning management systems, however, do double up as
learning environments. Our experience shows, however,
that certain key properties, listed below, of interactive
learning are absent in learning management systems.

Motivation: essentials of a learning environment:
We motivate this work by first examining the essential
capabilities that a learning environment must support:

978-1-4244-7361-8/10/$26.00 © 2010 IEEE

122

« support for portable content Content is central to
a learning environment. Content creators must be
able to create material that is portable, ie., runs on
different platforms and can be created through several
tools. Content developers should be able to create
content independent of the environment to the extent
possible. The learning environment should be able to
use the content without monopolising it.

writing and sharing annotations and commenting
The student should be able to not only read the
material (narrative), but annotate it and also comment
on the material[3], [4], [5], [6], [7]. The student
should be able to also share these annotations.
interacting with the learning artefacts Learning
artefacts are objects that are part of the narrative.
They typically include data, plots, graphs, videos,
animations, examples, code (if it is programming),
etc [8], [9]. A student should be able to annotate
and modify these and reinterpret the result of those
modifications. Eg., change the data points and see the
resultant plot, change the parameters in an animation
and rerun the animation, etc.

versioning of previous interactions Learning is iter-
ative. Each iteration of learning is different from all
others and adds something of value. The ability of the
system to remember previous versions of interactions
and iterations is important for the student to trace for
herself the process of learning.

querying Collaborative and immersive learning
around a knowledge base has the effect of growing
the knowledge base [10]. The ability to query the
knowledge base is important, e.g., “get me all the
comments from Shiela and Neel where they talk
about Fullerenes and Entropy.”

Contributions of this work: In this paper, we present
an interactive workbook as an example of a synthesized
Web 2.0 learning environment. We arrived at the synthesis
approach after considering several systems (see Sections II
and IV for details). We found that, in general, specialized
learning systems are either monolithic or difficult to ex-
tend, and when open source, are designed either for learn-
ing management (Moodle) or content management(wiki’s,
Drupal etc). On the other hand, we were able to synthesize
the workbook from off the shelf software (SVN version
control, Trac issue tracking, Firefox browser, SQLite
query language, reStructuredText markup) with only minor
integration effort (a few hundred lines of Python and
Javascript code). Furthermore, the approach we use is

general; it can be adapted with any artefact with a web
interface. The workbook is a demonstration of how the
system interfaces with such a learning artefact, in this case,
an independent programming environment.

Workbook main features: The workbook we present
consists of a sharable narrative annotatable by a group of
learners. The narrative is embellished with various interac-
tive components. Annotations at the individual and group
level allow the users of the workbook to contribute to and
share a collaborative learning space. The narrative itself
may be versioned by the author. Learning artefacts (like
source code in the programming environment attached to
the workbook) are separately editable and versioned. The
editing and versioning reinforces the iterative nature of
learning. A custom querying facility allows users to search
for material in the narrative and the annotations and then
store the queries themselves, thus customizing the search
capability. A portable markup language to store content
makes it easy for the author of the narrative to create
documents that can be easily integrated into the workbook,
but also generate HTML, print and presentation formats.
Finally, a highly customizable browser interface allows
one to plug in other learning artefacts and environments.
The workbook interfaces with a complete programming
environment (debugger and code runner). The comments
and annotations interface is also implemented as a browser
plugin. The key capabilities of the system are summarised
in Figure 1. A screen shot of the system showing some of
its capabilities is given in Figure 2.

ortable
H Markup

Annotations

Figure 1.

ustomizable
Plugins
Key capabilities of the system.

Paper road map: The rest of the paper is organised as
follows: In Section II we describe the approach we took
in designing the system. We outline the progression of
the key technology choices that we made to arrive at the
current system. Next, in Section III, describe the basic
architecture of the system and demonstrate how the plug-
ins we built or customized interact with the architectural
components of the system. In Section IV we compare
our system with related work and also with existing
and past systems. In Section V we suggest directions
for further work, focusing on multimedia and semantic
web. In Section VI we conclude by suggesting how

123

our approach could be useful in an educational institute
setting.

II. APPROACH

This section is an account of how our technology
choices evolved in the process of arriving at the design for
the current learning environment supporting the workbook.

Portability and web standards: Initially, our idea was
to put together a narrative for a book (not a workbook)
using a simple set of HTML pages. Plain HTML, along
with cascading style sheets (css), was chosen because of
its extreme portability (viewable on any browser) plus its
support for editing on a variety of platforms (text editors
like vim, emacs, specialised tools like Visual studio,
Dreamweaver, Bluefish etc.). There is another aspect to
portability: independence of content from technology and
adherence to web standards. We were keen that during
the development of the content, our content is not locked
into a learning management system. We considered using
Moodle, the popular learning management system whose
model is based on uploading content (typically as zip files
or pdf’s). Directly uploading HTML files into Moodle
renders them non-relocatable (href’s to relative locations
do not work). This is because Moodle is not designed
to be a web container for HTML. On the other hand,
Moodle is SCORM compliant. In this paper, however,
we make no pretense of portability in terms of learning
objects, whose pedagogical value in some contexts is
open to scrutiny [11]. Rather, our interest is in assem-
bling components on the web, and we therefore place
primacy on compatibility with web standards (HTML,
CSS, Javascript).

Versioning: Versioning was deemed necessary from the
very beginning, because of our philosophy “documents
are software.”” A book, like software, consist of several
components, usually arranged as a set of files (chapters,
figures, code artefacts, tables, etc.). Furthermore the book
is built, exactly in the sense of a software build using
these components and text processing tools (like ETEX,
for example). Following the documents as software dic-
tum, we kept HTML pages under version control (SVN).
This also supported multi-author editing (akin to multi-
ple developers on a software project). Versioning of the
book becomes crucial, because book writing, like software
involves endless iterations and corrections by a changing
window of people, with the need to refer to older versions.
Furthermore all source code artefacts in the workbook
needed to be versioned, so that the student could save
older code, for example.

From HTML to resT and Sphinx: We achieved a further
increase in portability when we switched to Restructured
Text (reST). While reST documents could be converted
to HTML easily, they could also be converted to IETEX,
and ODT (Open Office). Also, as a markup language,
reST is a lightweight alternative to HTML. (See Figure 3
for an example.) Sphinx, a related tool [12], gave us the
ability to partition our narrative into separate files based on

Link to all comments

Search

logged in as admin = Logout Preferences 8p/Guide About Trac

[Coronse sourced | search {_oiog Y admn |

Start Page Index History Last Change

\ Wiki

Objects, Functions gnd Inheritance in Javascript Link to svn repository

Lesson Objective

The objective of this lesson is to understand basic object oriented programming using Javascript. We
learn how to retrieve and set fields of an object. We learn the relation between ordinary objects, function
objects, and the mechanism of prototype inheritance.

Literal Javascript Objects Narrative

Objects are essentially tables of key value pairs. The keys, which are symbols can be paired with any
value. We shall be learn how objects behave in the Javascript language.

For example, the definition

Line

Link to source code on

1 vara={x: 3,y : 4});

4, admin -- 2010-02-11 12:03
Test Comment —4%

3. admin -- 2010-02-11 12:03

code
Test Comment -3

2. admin -- 2010-02-08 21:59

Test Comment 2

Link to all comments on this section

binds the identifier a to an object with two fields: x and vy.

(‘s SVN
javascriptSource.js

Recent comments on

Firebug console for
running code.

k' [Console~ | HTML €S5 Script DOM \ch
Clear Persist Profile
>> var a = {x : 3, y : 4}; a.x; a.x =2 + 3; a.z = 7;
X+a.zZ;
>>vara={x:3,y:4}; ax; ax=2+3 az=7; a.x+a.z; 5]

Figure 2. A screen shot of the Workbook showing integration with the programming environment (Firebug console), link to SVN, and annotations.

(recent comments).

chapters and sections. Sphinx also allows searching words
and phrases in the entire document.

Browser as an interactive platform: Progressing from
a book to a workbook required that we provide support
for interaction with learning artefacts. For the specific
instance of the learning objective we had in mind (learning
Javascript programming), we sought a programming envi-
ronment that would seamlessly mesh with the browser,
which was used for displaying the content. Here, Firefox
became a decisive choice, because it supports an open
plugin interface. The Firebug plugin was a perfect choice
as a Javascript programming environment [13]. However

124

its integration with the narrative was an issue. To click
a code fragment in the book and run it in the Firebug
console, we needed to write a special-purpose plugin.
This plugin is a handler that transports the code fragment
into the Firebug console and executes it there (details in
Section III-B).

Shared annotations: Implementing annotations required
implementing another plugin that would allow interac-
tively associating a comment with a paragraph or a
code fragment. Initially a Javascript and Ajax module
was written to retrieve annotations posted by the user
and store them into the SVN repository by using PHP

Functions and Inheritance

The above is the document title

—-x— coding: utf-8 —x-
role:: ci
:class: code-inline

Literal Javascript Obijects

Objects are
value pairs.

essentially tables of key
The keys, which are

symbols can be paired with any value.

We shall be learn how objects behave

in the Javascript language.

For example, the definition

1}

[[IncludeSource (javascriptSource. js,
start=1, end=1)]]

[[RecentChangesBlog (recent=3,
name=Narrator)]]

[blog:Narrator Comments]

Figure 3. reST markup for a section of the narrative of Figure 2.

at the backend. However using this approach for every
functionality in the workbook meant fresh modules to
be written either in Javascript or PHP. Hence, instead of
building each module from scratch, we chose a different
approach, based on synthesizing an environment from the
Trac system, to which we turn our attention.

Synthesizing a learning environment from Trac: Trac
is a popular open source project management and issue
tracking tool [14]. When we investigated the suitability
of Trac as a learning environment, we found that it was
remarkably easy to transform it into a learning envi-
ronment. This was possible only because Trac supports
integration through plugins with several of the robust and
portable technologies we were already using. This support
allowed us to create our own plugins for implementing
shared annotations and the interface to the programming
environment. The integration of these tools with Trac and
the overall architecture is explained in the next section.

III. ARCHITECTURE

In this section we discuss the overall architecture of
our system. The first subsection briefly recalls the overall
architecture of Trac and the other subsystems. The second
subsection explains the structure of the plugins we wrote
or adapted to synthesize a learning environment from Trac.

A. Trac and Related components

The architecture of current system is shown in Fig-
ure 4. The system architecture consists of Trac and its
coupling with other standard systems. We describe how

format=full,

125

this arrangement is useful for synthesizing a learning
environment from Trac:

e SVN: We use SVN to version both the narrative
(content) and the source code used in examples. Trac
links to the SVN repository. Each user is provided
with a copy of source code . This allows the user to
browse and modify source code of the workbook. The
user can also refer to older versions of the sources.
The multi-user support has been implemented by
branching a master copy of the source code. Thus
each time a new user is added, a folder is created
in the users name. The source code is copied to
this folder and from there on any changes made to
the code are versioned, stored and retrieved from
the same folder. However we decided that only the
author should have the permission to edit the content
of the book. Allowing the users to modify content
would give rise to a lot of issues that cannot be
handled by our system at present and can be done in
future. Presently only the author has the permission to
version the content of the narrative. A user can write
a custom query to fetch content and filter them based
on version, time-stamp, author, etc. This feature is
particularly useful in a shared environment to know
who made what changes to the source base.

e Markup: Trac’s wiki and content management sup-
ports reST markup language. This has several use-
ful implications. Files from SVN may be displayed
as 1reST in Trac’s source browser. This allows us
to maintain content independently in SVN, while
displaying it within Trac using reST markup. Sec-
ond, it allows us to preserve the ability to generate
ITEXfrom the source, independent of Trac. Com-
ments and annotations can also freely use the reST
markup syntax.
Querying: Trac comes equipped with querying inter-
face to the SqLite relational database system. This
interface can be used for several types of queries in
the system, like gathering recent comments (public
and)about a topic, searching the narrative, and ana-
lytics, for example. Custom queries may be created
and stored. Figure 5 shows the query used to generate
the three most recent annotations.

Customization Using Plugins: Finally, the easily cus-

tomizable architecture of Trac is key to transforming

it from a project management tool to a learning en-
vironment. The effort involved in this transformation
was writing a few plugins and customizing two other
existing plugins. These plugins and their interfaces
with the Trac system are discussed in Section III-B.

Portable development and content hosting using Trac:
Fortunately, Trac allows us to stay faithful to our goal
of independent and portable content development. At the
same time, it works as a container for the narrative. It
supports interaction and annotations via the plugins. To
use Trac to achieve the separation of content and hosting,
we outline the following process: content is developed

Querying

Programming T {Egslﬁmj
Artefact rac querying
(Interactions)
{ Code Display \ ‘Wiki Pages Doc Utils
(narrative) (rmarkup)

Include Source
Macro

~
| Swn Integration

)
J

7

Pygments
Plugin
| —

Code Runner

CodeRunner
Plugin

Versioning

Plugins devweloped
by us

Awailable plugins

Trac inbuilt

Other artefacts

¥

ImportPlugin

L | Blog Plugin I
y

L
Extermnal Gat Recant
Resources Biog Comments
Import and Anl;llotl;’:mon_s
Export (collaborative)
D ——

Tightly Coupled

Loosely Coupled

-— - -

Figure 4. Architecture of the system. Components tightly (respectively loosely) coupled to Trac support (respectively extend) the basic functionality

of Trac.

Select name of post,comment,timestamp
of three most recent annotations.
SELECT name of post, comment, time
FROM fullblog_comments
WHERE name="Narrator"

ORDER BY number DESC LIMIT 3;

Figure 5. SQLite query to retrieve three most recent annotations for
the section. This query is invoked by the RecentBlogComments macro
(embedded in the narrative markup of Figure 3.)

independent of Trac in the reST format using Sphinx.
Then the content is imported into Trac using a special
purpose script. Trac’s in built support for reST makes
this possible. Once the narrative is integrated into Trac,
users can annotate it . These annotations do not affect
the narrative sources. Also, source code artefacts are
developed independent of both the narrative and Trac.
However, once developed they integrate into Trac via
Trac’s SVN plugin described in III-B.

B. Plugins and their interface to Trac

Many of the features that we outlined above do not
come with the default installation of Trac. Various plugins
that we used, wrote, configured or installed on top of Trac
are described below:

Plugins for supporting programming artefacts: The
includeSourceMacro [15] plugin loads the user’s version
of source code from files in SVN into Trac so that source
code can be included into the narrative. Various options are

available to customize the inclusion:line numbers, range,
version number etc. The Pygments plugin [16] supports
colouring of code displayed in the narrative. Pygments
is a general purpose plugin used for highlighting code of
several programming languages in Python based document
generation tools like Sphinx. The Firebug plugin provides
a javascript programming environment tightly integrated
with the Firefox browser, which allows a user to run, edit
and debug javascript code. The CodeRunnerPlugin plugin
acts as a link between the source code in the narrative
window and the Firebug window. It ships the code to the
Firebug console and runs it. This is one of the two plugins
we had to write from scratch. It was about 100 lines of
Javascript and Python code.

Plugins to support narrative and source code interac-
tion: The Wiki Pages component forms the presentation
layer of the learning environment and interacts with the
user. The wiki displays the narrative and content that is
stored in the Trac database. The Docutils plugin [17]
allows the Trac wiki to use reST as its default markup
language. The Querying engine is a component internal to
Trac. It enables the user to write custom SQLite queries on
the SVN repository or Trac database. The Svn-Trac plugin
[18] integrates Trac with the SVN repository. The plugin
requires some minor configuration after Trac installation.

Annotations and Querying: To implement shared anno-
tations and commenting, we adapted Blog-plugin [19],
an already available Trac plugin. The plugin supports
personal and group comments. Every section in narrative
is associated with a new post in the blog. A link at

126

the end of every section shows all comments on that
section. Additionally, GetRecentBlogComments, a plugin
which we developed, shows the most recent annotations
on that section. The plugins support various filters to
help customize the annotations, including the number of
annotations, time limits between which comments are to
be shown, and the author of the comments. The plugins are
easy to build, thanks to SQLite. GetRecentBlogComments
is actually implemented as a macro that translates into an
SQL query. (See Figure 5.)

IV. RELATED SYSTEMS

Collaborative learning environments have been an active
area of research since the 1990’s. Today there are several
ebooks, workbooks, systems and learning management
systems that support various learning environment fea-
tures. We categorise these related works broadly as web-
based e-books, annotation based systems, learning man-
agement systems, wiki and related systems, and others. We
compare these with the attributes of learning environments
outlined in Section I. Our survey is slanted towards
learning environments for information technology and
programming education. A summary of our comparison
with the more prominent and current systems is shown in
Table 1.

e-Books: Web based e-books have been popular since the
beginning of the web. Earlier books were in HTML and
read-only. Amongst the most popular is the reference site
w3schools.com [21]. It supports editing/running of code
present in the narrative, but not annotations, versioning
or querying. Eloquent Javascript is an online book on
javascript programming that supports execution and mod-
ification of code examples [8]. The O’Reilly publication
Real World Haskell supports user comments after every
paragraph, but is not interactive [20]. Sage, an online
workbook for mathematics education is the closest to our
idea of an learning environment [9]. Sage supports the
notion of a notebook within which one can create, collab-
orate, and publish interactive worksheets that also include
Python code scripts. However, there is no provision for
versioning or annotations in one’s workspace. Several
websites also support the feature of content uploading by
the authors [24]. These websites can be used by authors to
publish and extend content in modules or lectures but these
sites lack the feature of personalized learning environment
as the content can niether be annotated nor discussed
amongst peer groups.

Annotation-based systems: Several early systems in-
corporated group annotations. ComMentor [3], CoNote
[4], VirtualNotes [5], GroupWeb [6], and the system of
Shickler et al [7] support personal and shared annotations.
Some of these systems, however, require separate and
specialised browsers to be installed, which limits their
use as a generic user interface. Besides they also lack
support for narrative, learning artefacts, versioning of text,
custom querying and use of project management tools.
Modern pdf viewers allow the reader to annotate and save
annotations, but without any sharing or querying. The

127

role of shared annotations in improving collaboration and
interaction between peers and learning has been recently
empirically studied by Lan and Jiang[25].

Systems with query support: An early example of a
system that supports querying of annotations is the web-
based e-book reading system of Chen and Wang [10].
The students can query related knowledge: the hypertext
technique and query strings are used to provide them
with adequate reference information. It also forecasts
the reading performance of the user based on his/her
interaction with the content. However, they do not consider
the problem of integrating learning artefacts, or versioning.

Learning management systems: Moodle is perhaps the
most widely used internet based learning management
system [2] today. It is open source and highly customiz-
able. However, it isn’t designed to work as a learning
environment that involves user interaction with artefacts
like a programming workbook, for example. It has no
notion of a narrative; non-editable material is typically
uploaded by instructors as files in pdf or doc format. There
is support for a wiki, and discussion groups, but there is
no way to link to the posted material. Moodle functions as
a repository for learning objects. It supports collaboration
in specific ways : there is a database for lectures; tutorials
and quizzes, there are discussion groups for students
and teachers. However, Moodle is not connected to a
versioning system at the back end. Recently, a module
to support annotations in Moodle has been proposed [23].

Wiki’s and content management systems: Mediawiki
is a popular content management system, but we don’t
find it suitable for teaching programming (no interac-
tion, saving and versioning of source code, no paragraph
based commenting mechanism) [22]. Mediawiki does not
currently integrate with SVN. Also once the content is
on the wiki the author loses control over portability of
the narrative. Also, at this point, Trac has better support
than Mediawiki for integrating interactive artefacts like
programming environments. There isn’t any feature of
editing and running of the code on a wiki.

V. FUTURE WORK

Field testing: The synthesised learning environment we
demonstrate in this paper is currently a research prototype
and a testbed for further experimentation with learning
environments. The system is currently web hosted on an
experimental basis [26]. We plan to field test a version
of it in a full classroom setting later this year. Meanwhile,
there are several technical and process level issues that we
are working out: generate the content for the programming
book, scaling the number of users, hosting on a reliable
platform, etc. Additional plugins to automatically insert
macro invocations (like RecentBlogComments) into the
narrative and simplify the markup in other ways still need
to written.

Multimedia: The learning platform itself is currently

missing any multimedia integration (videos, audio clips,
etc.), and also animation. The relatively easy effort in

COMPARISON OF EXISTING SYSTEMS

Table

I

Example Code Annotations Language Open source | Extensible/Customizable
EJ[8] Run/Edit No HTML Yes No
RWH]J[20] No Shared HTML No No
SAGE[9] Run/Edit Discussion reST Yes Yes
‘W3Schools[21] Run/Edit No HTML Yes No
Media Wiki[22] No Discussion Wiki Markup Yes Yes
Moodle[2] No Personal/Shared(.ppt)[23] | Wiki Markup Yes Yes
Acrobat No Personal - No No
Our System Run/Edit Shared/Personal reST Yes Yes

putting together the system encourages us to believe that
such a learning environment could be used by teachers and
students in other disciplines, like humanities, where con-
tent is more dominant than interaction. Another challenge
is to use existing content available in different formats like
pdf and integrate them into the learning environment (with
support for annotations, etc.). For example, Javascript
hooks in pdf could be exploited do this integration. This
could allow personalized annotations in pdf files to inte-
grate with Trac.

Integrating learning with semantic web: Integration of
semantic web with our system is a natural and promising
direction for further work. Semantic web technologies for
information that aid students in learning [27]. Integration
of e-learning systems and Semantic web for semantic
services like semantic browsing, semantic search or smart
question answering with the system are interesting possi-
bilities for the future [28]. Engineering these on top of the
current Trac based environment will also benefit project
management, Trac’s original application domain.

VI. CONCLUSION

We have demonstrated how a learning environment can
be synthesized using “off-the-shelf” open source tools. We
have also shown the value of this approach: in terms of
adaptability and flexibility. The system we have built also
allows integrating in artefacts of learning, like an entire
environment for running program code. The relative ease
with which we could put together such a system is a
vindication of our approach to leverage open standards
(like www, web 2.0) and highly customizable and already
popular open source systems. The adherence to web
standards allowed us to synthesize the system out of other
web based systems.

The technology landscape today opens up a new type
of innovation model. In this model people recombine
existing systems in interesting and useful ways, rather
than build systems ab initio. We feel that educational
institutes should embrace such models and help spawn
a new generation of application integration engineers

128

who continuously explore, integrate and customize such
systems for the user base of that organization. The system
we have demonstrated here in this research is evidence of
the potential of such an innovation model. Following the
idea of introducing such models and examining its various
implications is clearly an interesting topic for future study
by the education community.

VII. ACKNOWLEDGMENTS

This work was partly supported by grants from the
Government of India Ministry of Information Technology.
We are grateful for the systems support provided by the
the EnhanceEdu laboratory of IIIT Hyderabad in carrying
out this project.

REFERENCES

[1] N. A. Mukti, M. Dayana Razali, F. Ramli, H. B. Zaman,
and A. Ahmad, “Hybrid learning and online collaborative
enhance students’ performance,” in Proceedings of the
Fifth IEEE International Conference on Advanced Learning
Technologies. ~ Washington, DC, USA: IEEE Computer
Society, 2005, pp. 481 — 483.

[2] M. Dougiamas, “Moodle,” 2002. [Online]. Available:

http://moodle.org/

[3] M. Roscheisen, C. Mogensen, and T. Winograd, “Beyond

browsing: shared comments, soaps, trails, and on-line com-

munities,” Comput. Netw. ISDN Syst., vol. 27, no. 6, pp.

739-749, 1995.

[4] J. R. Davis and D. P. Huttenlocher, “Shared annotation for

cooperative learning,” in CSCL '95: The first international

conference on Computer support for collaborative learning.

Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1995, pp.

84-88.

[5]1 A. Geyer-Schulz, S. Koch, and G. Schneider, “Virtual notes:

Annotations on the www for learning environments,” in

Proceedings of the Fifth Americas Conference on Informa-

tion Systems (AMCIS), 1999.

[6] S. Greenberg, “Collaborative interfaces for the web,” in

Human Factors and Web Development, 1997, pp. 241-254.

(71

[8

—_—

(9]

(10]

(1]

[12]

(13]

(14]
(15]

(16]
(17]

(18]

M. A. Schickler, M. S. Mazer, and C. Brooks, “Pan-browser
support for annotations and other meta-information on the
world wide web,” in Proceedings of the fifth international
World Wide Web conference on Computer networks and
ISDN systems. Amsterdam, The Netherlands, The Nether-
lands: Elsevier Science Publishers B. V., 1996, pp. 1063—
1074.

M. Haverbeke, Eloquent Javascript. published on the web,
2006. [Online]. Available: http://eloquentjavascript.net/

“Sage (mathematics software),” 2005. [Online]. Available:
http://www.sagemath.org/

C.-Y. Wang and G.-D. Chen, “Extending e-books with
annotation, online support and assessment mechanisms to
increase efficiency of learning,” SIGCSE Bull., vol. 36,
no. 3, pp. 132-136, 2004.

R. Godwin-Jones, “Emerging technologies: learning ob-
jects: scorn or SCORM?” Language Learning and Tech-
nology, vol. 8, no. 2, pp. 7-12, May 2004.

“Sphinx-python documentation tool.” [Online]. Available:
http://sphinx.pocoo.org/

“Firebug-an addon for firefox.” [Online]. Available:
https://addons.mozilla.org/en-US/firefox/addon/1843

“Trac.” [Online]. Available: http://trac.edgewall.org/

“Includesourcemacro.” [Online]. Available:
trac-hacks.org/wiki/IncludeSourcePartialPlugin

http://

“Pygments.” [Online]. Available: http://pygments.org/

“Docutils.” [Online]. Available: http://docutils.sourceforge.
net/

“Trac-svn plugin.” [Online]. Available: http://trac.edgewall.
org/wiki/TracSubversion

129

(19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

“Full blog.” [Online]. Available: http://trac-hacks.org/wiki/
FullBlogPlugin

B. O’Sullivan, D. Stewart, and J. Goerzen, Real World
Haskell. published on the web, 2008. [Online]. Available:
http://book.realworldhaskell.org/read/

R. Data, W3Schools.com. published on the web, 1999.
[Online]. Available: http://www.w3schools.com

“Mediawiki,”
mediawiki.org/

2002. [Online]. Available: http://www.

H.-T. Lin, C.-H. Wang, C.-F. Lin, and S.-M. Yuan, “An-
notating learning materials on moodle 1Ims,” in Computer
Technology and Development, 2009. ICCTD ’09. Interna-
tional Conference on, vol. 2, Nov. 2009, pp. 455-459.

“Connexions.” [Online]. Available: http://cnx.org/

Y.-F. Lan and Y.-C. Jiang, “Using instant messaging and
annotation services to improve undergraduate programming
courses in web-based collaborative learning,” Aug. 2009,
pp. 236 —241.

“Principles of programming workbook.” [Online]. Avail-
able: http://enhanceedu.iiit.ac.in/pop/trac/wiki/BookIndex

J. Jovanovic, V. Devedzic, D. Gasevic, M. Hatala, T. Eap,
G. Richards, and C. Brooks, “Using semantic web tech-
nologies to analyze learning content,” Internet Computing,
IEEE, vol. 11, no. 5, pp. 45 =53, Sep.-Oct. 2007.

D. Kokoshi and B. Cico, “Integration of semantic web in
an elearning environment,” Informatics, Balkan Conference
in, pp. 256-259, 2009.

