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As both electronic structure methods and the computers on which they are run become
increasingly complex, the task of producing robust, reliable, high-performance implementa-
tions of methods at a rapid pace becomes increasingly daunting. In this paper we present an
overview of the Tensor Contraction Engine (TCE), a unique effort to address issues of both
productivity and performance through automatic code generation. The TCE is designed to
take equations for many-body methods in a convenient high-level form and acts like an
optimizing compiler, producing an implementation tuned to the target computer system and
even to the specific chemical problem of interest. We provide examples to illustrate the TCE
approach, including the ability to target different parallel programming models, and the
effects of particular optimizations.

1. Introduction

Over roughly the last twenty-five years, coupled cluster
(CC) and othermany-bodymethods have been developed
into the dominant methodology for high-quality electro-
nic structure calculations, thanks to the significant efforts
of Prof. Rodney J. Bartlett and his research collabora-
tors, as well as numerous other research groups. Starting

from the simplest CCD method [1–3] through the recent
implementation of CCSDTQP [4], these methods have
grown to a level of theoretical sophistication and
computational complexity that could hardly have been
imagined when the first methods were published, and
have come to represent enormous coding tasks. Similarly,
the breadth of methods has expanded from straight-
forward single-reference CCmethods to include a variety
of multireference approaches [5–17], methods for excited
states and various properties [5, 18–30].

At the same time, computer hardware has grown

orders of magnitude more powerful, helping to deliver
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on the promise of applying many-body methods to
‘‘real’’ chemical problems and synergistically spurring
new scientific goals, new method development and
new algorithms to take advantage of the ever-increasing
computational power. In addition to new algorithms
for ‘‘standard’’ methods [31, 32], new variations,
such as ‘‘local’’ and atomic orbital (AO) based imple-
mentations [33–36], and approaches based on resolution
of the identity, density fitting, and Cholesky decom-
position [37, 38] are being developed in response to
the size and physical characteristics of the chemical
systems now within reach of many-body methods.
However, in order to achieve these performance

improvements, computer hardware has also grown
significantly more complex, with increasing disparities
between the fundamental capabilities of the CPU and
the abilities of the memory and other busses (i.e. disk) to
move the data through the memory hierarchy at a pace
that allows the CPU to perform up to its capabilities.
This period has also seen the coming-of-age of parallel
computing, with dual-processor desktop systems being
routinely available, and ownership of larger Beowulf
clusters or more highly-integrated parallel systems easily
accessible to many research groups. Packages such as
NWChem [39, 40] and MPQC [41–43] have been
developed largely from scratch for large-scale parallel
computing environments, and many other electronic
structure packages have been incrementally parallelized,
by transformation or rewriting of existing sequential
code, resulting in parallel-capable code with a wide
range of parallel scalability.
The complexity of modern software development in

this field can be seen in a simple comparison of the
number of terms in various coupled cluster methods and
the number of source lines of code (SLOCs) [44]
required to implement them. While the precise numbers
will, of course, vary with the details of the implementa-
tion, table 1 illustrates the comparison for one particular
case. The fact that roughly 300 lines of code are required
per term, and that the number rises with the level of
excitation included in the method, is an indication of
the size of the semantic gap between the way quantum
chemists think about their methods and what is required
to implement them with current general-purpose pro-
gramming languages, such as Fortran, C, or Cþþ.
Serious attempts to produce implementations with
maximum sequential performance across a broad
range of computer platforms would increase the ratio,
and highly scalable parallelization would increase it even
more, to the extent of requiring multiple implementa-
tions of some parts of the code to achieve high
performance on all platforms. As a consequence,
researchers are typically forced to choose between
exploration of new methodological ideas and the

creation of robust, high-performance implementations
which are applicable to a wide range of chemical
problems. Moreover, even when focused in this manner,
new developments often require months of effort and
still result in codes with lower levels of capability or
performance than might be desired.

To help address this problem, the electronic structure
community has often turned to more advanced methods
to accelerate the task of implementing the desired
software, including the use of automatic code generation
tools. Such tools are designed either to generate code for
a specific method or problem, or to provide a ‘‘high-level
language’’ which is generally much smaller than a
general-purpose language and tailored for a class of
methods or problems. Historically, these approaches
have focused primarily on the ‘‘productivity’’ side of
the complexity problem described above – the rate at
which methods can be implemented – though a few have
been aimed at enhancing performance, usually of a very
particular problem or algorithm. In this paper, we offer
an overview of an ongoing effort to develop a suite of
tools, known as the Tensor Contraction Engine (TCE),
intended to simultaneously address both productivity
and performance for a broad range of many-body
methods.

2. Background: advanced approaches to software

development for electronic structure theory

The most common approach to increasing productivity
in scientific software development is the abstraction of
common code motifs into libraries which can be easily
reused. Among the most familiar examples of this
approach in electronic structure software are probably
numerical libraries, such as the BLAS [48] for basic
vector and matrix operations, and LAPACK [49, 50] for
linear solvers, eigensolvers, and other basic linear
algebra tools. The nature of high-end electronic
structure methods is such that there are significant

Table 1. Number of terms in various CC methods, the
number of source lines of code (SLOC) required to implement
them, and the ratio of the two. SLOC counts only code for
evaluating the basic tensor contraction expressions and does
not include integral evaluation or other necessary code. Counts
are for code generated by the prototype Tensor Contraction

Engine [45, 46], and are courtesy of So Hirata [47].

Method Terms SLOC SLOC/Term

CCD 11 3,209 292
CCSD 48 13,213 275

CCSDT 102 33,932 333
CCSDTQ 183 79,901 437
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similarities in the code required to implement one
method or another, both in terms of overall structure
and specific content. However the specific differences
between methods can make it very challenging to
directly reuse code from one to another. For example,
in the development of many-body methods, the most
easily recognized motif is probably the contraction of
tensors (integrals, excitation amplitudes, etc.) to form
other tensors (or, sometimes, scalars). However efficient
implementations of tensor contractions will vary sig-
nificantly depending on the details of how the tensors
are stored, which indices are contracted, and even the
size of the space covered by each index. As a result,
attempts to abstract tensor contractions into libraries
tend to be either very general and rather inefficient, or to
provide many distinct routines for different types of
contractions, and thus have too little of the desired
abstraction.
Generalized algorithms that work across a family of

methods are a higher-level alternative to direct reuse
of code for simplifying the development of complex
quantum chemical software. This approach involves the
development of a computational formalism that allows
an entire family of related methods to be expressed and
evaluated within a single body of code. For example,
formulations allowing the evaluation of properties to
arbitrary orders have been developed by Dykstra and
Jaisen at the SCF level [51, 52], and Piecuch and
coworkers for coupled cluster linear response theory
[53, 54]. Full-CI codes have often been adapted
to provide generalized algorithms for families of
other methods. Arbitrary-order perturbation theory
(i.e. MBPT-n) has been demonstrated by Knowles and
Handy [55, 56]. Coupled cluster methods with arbitrary
levels of excitation have been implemented by Hirata
[57], Kàllay [58], and Olsen [59]. Similar capabilities have
been demonstrated for Equation of Motion coupled
cluster (EOMCC) theories by Hirata et al. [60, 61] and
Hald et al. [62], as well as perturbative corrections to
EOMCC [63]. Recently Kallay has used string based
methods that are used widely in CI methods (e.g. [64]) to
generate CC energies of arbitrary order, using a single
general procedure to effect the tensor contractions.
In this implementation the antisymmetry of input and
intermediate tensors is treated in an efficient way, and
Kallay also introduced an elegant factorization scheme
for CC based methods [65], such that the scaling of
the method is similar to hand-coded implementations.
The string based algorithm has been used subsequently
to implement active space coupled cluster methods [66],
and analytical gradients [67] and Hessians [68] for CC
methods of arbitrary excitation level.
Another approach to simplifying software develop-

ment is automatic code generation. The code generation

system embodies a formalized understanding of how to
write the code for a given class of methods, capturing
the similarities among the different methods, while
allowing the specifics to be tailored to each method.
In this case, the ‘‘reuse’’ is not at the level of the code
itself, but rather the conceptual level above that. Code
generation may be controlled by modifying the gen-
erator itself, through simple configuration parameters
provided to the tool, or by a formally-defined language
(with a grammar and parser), which is often referred to
as a domain-specific language (in this case the scientific
domain of electronic structure theory) or a high-level
language, which should be contrasted with a general-
purpose programming language like C or Fortran. The
work of Janssen and Schaefer [69], Li and Paldus [70],
and Nooijen and coworkers [71, 72] are among the
published examples of the use of automatic code
generation in the context of various coupled cluster
methods. Recently, So Hirata created a prototype
version of the Tensor Contraction Engine that
accomplished the automated implementation of scalable
parallel versions of CI, MBPT and CC methods up to
quadruple excitation levels [45], and Equation of
Motion Coupled Cluster energies and properties [46].
While in these examples the primary utility of the code-
generation approach is to simplify and accelerate the
implementation of complex many-body methods, code-
generation approaches can also be applied to improving
performance. For example Fermann and Valeev’s
Libint [73] uses automatic code generation to produce
highly-optimized routines for integral evaluation analo-
gous to the way ATLAS [74, 75] generates tuned imple-
mentations of the BLAS libraries. Code-generation
approaches have some of the same limitations
as generalized algorithms. The breadth of methods to
which code generation can be applied tends not to be
as limited as for generalized algorithms, but depends
strongly on the level of effort put into the generality
of the code generation tool. Performance of the
generated code also strongly depends on the effort put
into the generator. On the other hand, automatic code
generation tools offer a number of unique advantages
as an approach for complex large-scale electronic
structure codes:

. New programming models, performance-related
changes, and other implementation details can be
applied to a wide range of methods by modifying
the generator and regenerating the various methods
of interest.

. It may be practical to generate implementations
tailored to specific computer platforms, or to
particular chemical problems in order to obtain
better performance or better management of
computational resources.
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. Code generation driven by a high-level domain-
specific language provides the user an opportunity
to express the calculation to be performed in a
form that is much closer to the way the researcher
derived the equations than is possible with hand
implementations in a traditional general-purpose
programming language.

To date, applications of automatic code-generation
ideas in electronic structure theory, and indeed in other
areas of computational science as well, have focused
essentially on either productivity (increasing the rate at
which software can be created) or the performance of the
resulting software. However there is no limitation
intrinsic to the approach that prevents both goals from
being pursued simultaneously. The Tensor Contraction
Engine (TCE) is a unique effort to bring together the
productivity and performance benefits of automatic
code generation to quickly and easily produce high-
performance parallel implementations of a broad
spectrum of many-body electronic structure methods.
The project team brings together a group of quantum
chemists and computer scientists and treats the problem
very much like the development of an optimizing
compiler. In the following sections, we describe
the overall approach and architecture of the TCE and
provide some specific examples of the benefits of this
approach in terms of flexibility, productivity, and
performance.

3. The tensor contraction engine

The Tensor Contraction Engine is structured along
the same basic lines as a compiler for a general-purpose
language, such as Fortran: an input language is
parsed into an internal representation, that internal
representation is processed to transform and optimize it,
and finally ‘‘executable’’ code is generated. In the case of
the TCE, the input language is a high-level, domain-
specific language which allows the user to express the
equations to be implemented in a form natural to
a quantum chemist, based on tensor expressions. The
use of a high-level input language provides the TCE with
a view of the problem in a natural form of expression,
before it is translated to satisfy the constraints of
a general-purpose language, such as Fortran. Based on
this high-level view, the TCE can perform optimizations
that are not possible once the desired operations have
been translated into a general-purpose language. These
optimizations can rigorously and systematically explore
the space of possible transformations, compared to the
far more empirical approach typically taken by software
developers implementing such codes by hand.
Moreover, it is possible to tailor the TCE’s processing

and optimizations to the resources and performance
characteristics of each hardware platform on which the
generated code will run, producing a different imple-
mentation tuned to each target system. In fact, the
generated code can even be tailored to specific chemical
problems, which may be useful for extremely large or
complex calculations.

Figure 1 illustrates the overall architecture of the
TCE, and the various components shown in the diagram
are described in more detail below.

3.1. Tensor expressions and the TCE language parser

In order to illustrate the operation of the first two boxes
in figure 1, consider the basic tensor expression

Sabij ¼
X
cefkl

AacikBbeflCdfjkDcdel: ð1Þ

This equation might be rendered in the TCE’s input
language as shown in Listing 1. All indices appearing in
TCE inputs are declared as being associated with a
particular range of values (lines 4–5). Ranges must be

TCE Language
Parser

Simple Expression Tree
Optimizations

Loop Fuser

Abstract Syntax Tree
Optimizations

Code Generator

Simple Code
Generator

Abstract Syntax Tree
Generator

Tensor Expressions

Generated Code

Figure 1. A general schematic representation of the archi-
tecture of the Tensor Contraction Engine software tools (both
prototype and optimizing). ‘‘Tensor Expressions’’ and
‘‘Generated Code’’ boxes represent the inputs and outputs of
the TCE tools. Dashed-line boxes represent one or more
optimization modules which act on the simple expression tree
or abstract syntax tree representations used within the TCE.
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declared with a size (lines 1–2) to allow the compiler to
compute the cost and resource requirements of each
expression during the optimizations. These sizes amount
to upper bounds – the generated code will work up to
the indicated size, but may fail beyond it due to resource
exhaustion. TCE procedures are named and declare
both their input and output data (lines 9–10). Tensor
expressions are written as explicit summations in
notation reminiscent of that used by Mathematica [76]
(lines 12–13). The mlimit declaration indicates the
amount of main memory available on the target system.
The TCE input language also allows external (i.e. not
generated by the TCE) functions to be declared and used
in tensor expressions, for example to obtain integrals.
The TCE input is parsed and converted into an

expression tree, in which the tensor contraction expres-
sions are represented as a binary tree, with nodes for
each operator or summation in the expression and
tensor elements (i.e. A½a,c,i,k�) as the leaves. This is
the first of two ‘‘internal representations’’ used within
the TCE, which can be transformed in systematic ways
by various optimizations.

3.2. Expression tree optimizations and loop fusion

Operation minimization applies transformations based
on the algebraic properties of commutativity and
associativity of addition and multiplication, and
the distributivity of multiplication over addition in
order to obtain an equivalent form with the
minimal scaling [77, 78]. For example, the four-fold
contraction of equation 2, which is Oðo4v5Þ as written,
would be transformed to the sequence of pairwise
contractions costing Oðo2v4 þ o3v3Þ shown in figure 2a.
This optimization would also convert the usual OðN8Þ

form in which a four-index integral transformation is
typically written (as a single contraction involving five

factors) into the OðN5Þ form in which it is usually
implemented (a sequence of pairwise contractions).
This optimization operates on the expression tree
representation of the TCE input, and is represented by
the upper dashed box in figure 1. At present,
these transformations can be applied to all terms within
a single statement. We are working to generalize
this optimization so that it can work across
multiple statements, which will allow recognization
of common subexpressions and more effective
factorization.

Because the operation minimization phase tends to
introduce very large intermediate tensors which may
exceed the available memory, loop fusion is used next to
minimize the space required for temporaries (also
known as memory minimization) [79]. This technique
selectively moves loops for the generation of temporary
tensors closer to where they are used, so that the
temporary can be generated and consumed in subsec-
tions instead of having to evaluate the entire tensor, as
illustrated in figure 2 (notice that in the fused code I1f
is a scalar and I2f is rank-2 whereas in the unfused
version, both are rank-4). Normally, the loop-fusion
optimization would be applied so as to preserve
the overall computational cost determined in the
operation minimization step, but more aggressive
fusion is also possible, with an increase in cost
(effectively undoing some or all of the operation
minimization). This may be useful, for example, if an
important calculation is so large (or resources so
constrained) that it cannot fit in the available memory
and disk storage, and the user is willing to pay the
additional computational cost.

Because loop fusion can interact strongly with
subsequent optimizations, the loop fuser does not
actually try to select the ‘‘best’’ set of loop fusions, but
rather annotates the expression tree with information

1 range V = 3000;
2 range O = 100;
3

4 index a,b,c,d,e,f : V;
5 index i,j,k,l : O;
6

7 mlimit = 100GB;
8

9 procedure P(in A[V,V,O,O], in B[V,V,V,O], in C[V,V,O,O], in D[V,V,V,O],
10 out S[V,V,O,O])=
11 begin
12 S[a,b,i,j] == sum[ A[a,c,i,k] * B[b,e,f,l] * C[d,f,j,k] * D[c,d,e,l],
13 {c,e,f,k,l}];
14 end

Listing 1. TCE input corresponding to equation 1.
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about a set of the highest-ranking fusion options to
allow for flexibility later in the optimization process.

3.3. Abstract syntax tree generation and optimizations

The expression tree used in the upper part of figure 1 is a
very simple representation of the desired computations
which allows only limited opportunities for optimi-
zation. Further optimization requires a more detailed
representation in which the individual loops, I/O
operations, and other features that must appear in the
final generated code can be represented. This represen-
tation, known in computer science as an abstract syntax
tree (AST) [80], is generated by the TCE from the output
of the loop fusion operation.
The flexibility of the AST allows a much broader

range of optimizations (represented collectively as
the lower dashed box in figure 1). Similar representa-
tions are used within compilers for general-purpose
languages, and there are many similar features in the
types of optimizations available in general-purpose
compilers and those being used in the TCE. An
important difference, however, is that TCE optimiza-
tions can take advantage of the fact that the problem
space is limited to electronic structure methods to
perform transformations that would not be applicable
in a more general context. At present, the primary
optimizations available at this stage of the TCE’s
execution are:

. Data distribution and partitioning: In order to
generate efficient parallel code, attention must
be paid to the details of how the data is
distributed across the machine. This component
seeks distributions of the data that will minimize the
parallel communication required to evaluate the
tensor equations. Since the data distribution pattern
affects the memory usage on the parallel
machine, this component is closely coupled with
the memory-minimization component [81].

. Space-time transformation: Depending on the

method and the size of the chemical problem, the
earlier loop-fusion optimization may be able to
reduce memory usage so that the entire computa-
tion fits into main memory, memory plus available
disk space, or it may not even be able to fit
the calculation into the available storage at all.
In the last case, the calculation cannot be
performed unless it is possible to trade storage for
recomputation of certain quantities; if the calcula-
tion requires the use of disk storage, there may be
performance advantages to recomputation instead
of storing on disk. The space-time transformation
module systematically explores opportunities to
trade storage space for recomputation to either fit
the problem into available storage, or to improve
performance. In the former case, if no satisfactory
transformation is found, feedback is provided to the
memory minimization module, causing it to seek a
different solution through more aggressive loop
fusion [82]. If the space-time transformation module
is successful in bringing down the memory require-
ment below the disk capacity, the data-locality
optimization module is invoked.

. Data-locality optimization: On modern computer

architectures, the idea of blocking (also known as
tiling) a calculation to make effective use of the
CPU’s cache memory is widely used to improve
performance. Such optimizations are based on
maximizing the locality of the computation, so
that data can be brought into cache and reused as
much as possible before it is evicted. For a disk-
based calculation, the computer’s main memory can
be treated as the ‘‘cache’’ and the same ideas can be
applied to optimizing the movement of data
between disk and main memory. The data-locality
optimization module determines the optimum tile
sizes to obtain the best overall performance from
the memory hierarchy [83, 84].

(a) Formula sequence (b) Direct implementation (unfused
code) (c) Memory-reduced implementation

(fused)

Figure 2. Example illustrating use of loop fusion for memory reduction based on the tensor contraction in equation 2.
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3.4. Code generation

Once all desired transformations and optimizations are
complete, the output code must be generated. In the case
of a general-purpose compiler this would be binary
object code, but for simplicity, the TCE produces its
output in a general purpose programming language (we
have arbitrarily chosen Fortran). The code-generation
phase of the TCE is depicted in two places in figure 1:
the Code Generator at the bottom of the diagram, and
the Simple Code Generator near the middle. The Simple
Code Generator represents the option to skip the more
complex optimizations which act on the detailed
abstract syntax tree representation and generate code
directly from the expression tree representation. This
option reflects the way the TCE has been developed. The
longer path, including all possible opportunities for
optimization represents the structure of the ‘‘optimizing
TCE’’ or o-TCE, while the shorter path represents the
structure of the ‘‘prototype TCE’’ or p-TCE.
The optimizations of the o-TCE acting on the detailed

AST representation are the most complex aspect of the

development of the TCE – many of the optimizations
currently implemented were newly developed as part of
this project. The p-TCE, initially developed by So
Hirata [45, 46], provides a simpler environment in which

to explore certain aspects of the code generation
problem, though of course it lacks much of the
optimization capability of the o-TCE. In order for the
o-TCE framework to be as extensible as possible, both
within the area of many-body methods, and in the

longer term beyond it, we are striving to carefully
distinguish the origins of various code generation
aspects and optimizations possible in many-body
methods as arising from the mathematical properties

of tensors, the physics of fermionic systems, or the
chemical or physical nature of the system being studied,
for example. In this respect, the p-TCE has proven very
useful in allowing us to systematically capture and
explore aspects of automatic code generation for

many different electronic structure methods and imple-
mentation models without having to worry about
the complexity of having fully general AST-based
optimizations that will work universally.
For either code-generation module, the code being

produced must be targeted to a particular environment.

This includes how it is interfaced with an existing
electronic structure package to obtain the integrals and
other inputs required, as well as the specific parallel
programming model. At present, we have chosen to

focus on NWChem [39, 40] as the electronic structure
package (though code generated by the p-TCE has also
been interfaced with UTChem [85, 86]). For parallel
computing, we are using the Global Array Toolkit

[87–89], which is widely used in parallel electronic
structure packages [39, 90–94]. Since, at present, the
TCE is only capable of evaluating tensor contraction
expressions themselves, the generated code must be
wrapped up into a (hand-written) driver to handle the
overall sequencing and iteration of the tensor expres-
sions, and we also assume that various numerical and
other libraries are available (such as the BLAS).

An important feature of this approach is the flexibility
provided by the code-generation process. Retargeting
the code to interface with a different electronic
structure package, parallel programming model, or
other variations in the environment is primarily a matter
of modifying the code-generation portion of the TCE
(though in some cases some optimizations may also need
to change). Once the modifications are made to the code
generator, an entire range of methods can be generated
targeting the new environment. The resulting changes
often suffuse the entire code, so hand implementations
would require significant modification for each and
every method separately. In the following section,
we present an example which takes advantage of the
flexibility of the code generation approach, as well
as examples of some of the other optimizations
implemented in the TCE.

4. Examples of TCE components in operation

In order to provide further insight into the operation
and capabilities of the TCE, in this section we present
examples of various modules of the TCE in operation:
our algorithm for operation minimization, which is
providing results very close to the best known manual
CCSD implementation; the effect of loop fusion and
data locality optimizations on an out-of-core four-index
transformation; and finally, an example of a new parallel
CCSD(T) algorithm implemented using the TCE.

4.1. The operation-minimization optimization

As discussed in the previous section, transforming
the input equations into a form that has the appropriate
computational scaling, often known as operation
minimization or strength reduction, is one of the most
critical optimizations in the TCE. When a method
is being implemented by hand, these kinds of transfor-
mations are generally made on a largely empirical basis,
informed by the developers experience, familiarity with
the literature, etc., and tend to evolve and improve
slowly over time. In an automatic code-generation
environment like the TCE, the power of the computer
can be used to perform a much more rigorous (and
perhaps even a complete) search of the alternatives for
operation minimization or other kinds of optimizations
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in order to find the best one. Moreover, optimizations in
the TCE can easily be applied to the whole range of
methods for which the TCE can produce code, while
in traditional software development, each method’s
implementation would have to be hand optimized
separately.
Operation minimization acts on the expression-tree

representation, which is a straightforward trans-
lation of the input equations into a binary tree of
variables (i.e. tensor elements) and mathematical
operations (i.e. multiplication, addition, summation).
The input equations can be transformed into equivalent
expressions through algebraic manipulations based
on properties such as commutativity, distributivity,
associativity, etc. Each variant would give rise to a new
expression tree which differs from the original input form
only with respect to the specific algebraic manipulations
that have been performed on it. Each tree also has a
unique cost associated with it based on the number and
types of operations to be performed. (For example,
A� Bþ A� C costs 4N 3 þN 2 operations if all matrices
are N�N, while A� ðBþC Þ costs 2N 3 þN 2.) The task
of operation minimization is to search among all these
equivalent expression trees to find the one with the
minimum cost.
Unfortunately, the number of alternative represent-

ations grows very quickly with the complexity of the
input equation, and the optimization is NP-complete
[95], meaning that the known algorithms to solve it are
exponential in cost, making it infeasible in general to
perform an exhaustive search for the minimum. Instead,
we use a heuristic algorithm to search for a solution
approximating the global-minimum operation cost.
To understand the algorithm, consider each of the

alternative expression trees above as a single node in a

larger graph. Adjacent nodes differ from each other
by a single algebraic transformation. Each node has a
number of neighbors corresponding to every possible
algebraic transformation that can be applied to every
element of the tree. A simple search strategy would be
to examine all the immediate neighbors of the starting
node (i.e. those that differ by exactly one algebraic
transformation somewhere in the expression tree) and
choose the one with the least cost. The procedure is
repeated at the new node, resulting in a direct-descent
algorithm. The direct descent algorithm will find a local
minimum in the graph, but there is no guarantee
of finding the global minimum in this way. An
improvement on this algorithm is to perform a number
of trials in which the first (or first several) step is taken at
random and then direct descent is used from there to
find a local minimum. The final result of the algorithm is
the minimum of the local minima found in each trial.

Preliminary results of applying these search strategies
to the CCSD T2 equations [96, 97] are shown in table 2.
For the ‘‘randomþ descent’’ search algorithm, we
perform 100 trials consisting of a single random step
from the input equations followed by direct descent to a
local minimum and taking the lowest result from all
trials. As we can see, both search algorithms obtain
results that are significantly better than the original
input form, and the randomþ descent algorithm obtains
a slightly lower coefficient for the o3v2 term. Comparing
the search results with the best known manual CCSD
formulation by Stanton and coworkers [97], we see that
N6 terms match. In the N5 terms, the search results are
fairly close to those of Stanton et al., but somewhat
higher. We consider these preliminary results to be very
positive, especially when considering they were obtained
with a completely automatic operation-minimization

Table 2. Comparison of the costs of various forms of the CCSD T2 equation. The original input expressions
(first line) served as the starting point for the direct-descent and randomþ descent optimization algorithms

described in the text. These results are compared with the best known manual formulation of the equations, by
Stanton et al. [97]. o and v are the size of the occupied and virtual orbital spaces, respectively, with oþ v ¼ N.

Only the leading terms ðN 6 and N 5Þ are shown; N4 and smaller terms are neglected.

Equations N 6 N 5

Original input
1

4
o2v4 þ

15

2
o3v3 þ

11

2
o4v2þ ov4 þ

19

2
o2v3 þ

49

2
o3v2 þ 7o4v

TCE direct descent
1

4
o2v4 þ 4o3v3 þ

1

2
o4v2þ 2ov4 þ 8o2v3 þ 9o3v2 þ 3o4v

TCE randomþ descent
1

4
o2v4 þ 4o3v3 þ

1

2
o4v2þ 2ov4 þ 8o2v3 þ 8o3v2 þ 3o4v

Stanton et al.
1

4
o2v4 þ 4o3v3 þ

1

2
o4v2þ ov4 þ 6o2v3 þ 10o3v2 þ o4v
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algorithm which uses purely algebraic properties,
without chemistry-specific information of any kind.
Moreover, the manual result we are comparing with
did not appear until fully nine years after the first
implementation of the CCSD method appeared [96].
We are now exploring the use of this approach to

operation minimization for CC methods with higher
excitations, where much less effort has been expended to
date in manually minimizing the operation counts. We
are also working to enhance the optimization algorithm
itself. Currently, it operates across all terms in a single
statement, but ultimately it will be able to work
on multiple statements to optimize an entire TCE
procedure, or even multiple procedures, adding the
capability to recognize and take advantage of common
subexpressions across a set of equations. We are also
exploring more exhaustive search strategies such as
simulated annealing or genetic algorithms.

4.2. Loop-fusion and Tiling optimizations for
the four-index transformation

As an example to illustrate the impact of the loop-fusion
and optimized tiling transformations being implemented
in the TCE, we consider the AO-to-MO integral
transformation (virtual orbitals only).y

Bða,b,c,d Þ ¼
X

�,�,�,�

Cð�,dÞCð�,cÞCð�,bÞCð�,aÞAð�,�,�,�Þ

where indices a–d denote virtual orbitals and �–� denote
the full orbital space.
The operation-minimal way of computing B would

be through the use of four steps, with temporary
intermediate tensors I1, I 2, and I 3, as follows:

I1ða, �, �, �Þ ¼
X
�

Cð�, aÞAð�, �, �, �Þ

I 2ða, b, �, �Þ ¼
X
�

Cð�, bÞI1ða, �, �, �Þ

I 3ða, b, c, �Þ ¼
X
�

Cð�, cÞI2ða, b, �, �Þ

Bða, b, c, dÞ ¼
X
�

Cð�, dÞI3ða, b, c, �Þ

If the integrals are too large to fit in memory, tiling of
the loops will be required, so that the tensors are
processed in blocks that can fit within memory.
A straightforward way of doing this is to directly tile
the loops corresponding to each of the four steps, using
uniform tile sizes on all dimensions. Thus, the loops for
the first step would be tiled with the same tile size t along
all indices �, �, �, �, and a. Due to the rank-4 tensors,

the maximum tile size is limited to the order of the
fourth root of memory size. Tile sizes may also be

optimized individually [98, 99].
The overhead of disk I/O can be reduced by using

loop fusion, so that the ranks of some of the
intermediate tensors are reduced, allowing them to

be completely memory resident to avoid disk I/O (see
figure 2, Section 3.2, and [98, 99]). While it is impossible

to perform loop fusions to reduce the ranks of all three
temporaries simultaneously, there are a number of ways
of using loop fusion to reduce the ranks of two of the

three intermediates.
In table 3 we compare timings for three different

implementations of this four-index transformation:
1. No Fusion, Simple Tiling: Neither loop-fusion nor

tile-size optimization is enabled; equi-sized tiles
along all dimensions are used, based on the 4th root
of the memory size.

2. No Fusion, Optimized Tiling: No loop fusion is used
(i.e. all intermediates I1, I 2, and I 3 are fully
produced and written out to disk and then read
back to be consumed), but the o-TCE tiling
optimization is enabled, so that different combina-
tions of tile sizes are explored and the best chosen.

3. FusionQOptimized Tiling: The o-TCE loop-fusion
and tiling optimizations are used to search amongst
a large space of loop structures corresponding to
different combinations of loop fusion and tile sizes.

It can be seen that the combined use of fusion and
tiling optimizations results in code that has 80% less
disk I/O than the version with the simple tiling, and a

66% reduction in total execution time.

4.3. Code generation for a loop-fused replicated-data
parallel CCSD(T) implementation

A long-term goal of the TCE project is, given an
accurate performance model for virtually any platform,

ySince spatial and permutational symmetry are not yet modeled in the o-TCE, the data presented here is for fully dense tensors, but
the optimization approach is expected to be similarly effective for the computations that exploit symmetry.

Table 3. Total disk I/O and execution times for code
generated with the benefit of various optimizations, as

described in the text. Results were obtained on a 900 MHz
Itanium 2 system with 4 GB of memory (denoted M below),

for 140 virtual orbitals and 150 AO orbitals.

Optimizations
included and omitted

Total disk I/O
I/O time (s)

Total execution
time (s)

No fusion, tile size ¼
ffiffiffiffi
M
3

4

q
1241 1957

No fusion, optimized tiling 748 1262
Fusionþ optimized tiling 248 955
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to be able to generate near-optimal code – automatically
taking into account the processor and network perfor-
mance, memory and disk resources and other features.
However since this is not yet possible, we have taken
advantage of the code-generation capabilities of
the TCE to produce a CCSD(T) [100] implementation
designed for the capabilities of modestly-sized, low-cost
commodity Beowulf cluster computers which are now
widely accessible, even in the individual laboratories
of many computational chemists. In this section, we
outline our on going work in this area.
CCSD(T) has become a ‘‘workhorse’’ method of

modern quantum chemistry because it provides

a relatively low-cost way of introducing some

triple-excitation effects based on a converged CCSD

wavefunction. The development of parallel algorithms
in which the data (t–amplitudes, integrals, etc.) are fully

distributed across the system is extremely complex

and finding a highly scalable distributed-data

parallel formulation with the TCE is still some ways
off. Nevertheless, it would be useful to be able to

speed up such calculations using widely available

commodity-cluster systems. By replicating the key data

across all processes of the parallel computer, we can
eliminate much of the complex data communications

that would be required for a fully distributed algorithm.

Instead we have a single, simple communication phase

in each CCSD iteration in which partial contributions to
the t–amplitude residuals are summed and the result

redistributed to all processes. Loop-fusion techniques

are used to insure that the CCSD iteration can take

place without the need for additional communication
of intermediates. The code for such a replicated-data

algorithm is straightforward to generate using the TCE,

and affords the opportunity to take advantage of
modest numbers of CPUs to speed up calculations.

To illustrate our approach, consider a representative
term from the CCSD equations,

Rab
ij ¼ Vcd

kl T
cd
ij T

b
l þ Vkb

ij

h i
Ta
k ð2Þ

in which a contribution to the residual for the double
excitation amplitudes, Rab

ij is computed from integrals

V
pa
ij , and amplitudes Tab

ij and Ta
i , where i . . . l denote

occupied orbitals, and a . . . d virtual orbitals.
In a straightforward implementation, intermediate

terms in this equation would be calculated in their
entirety and used as inputs to the next step of the
calculation. In pseudocode, the typical implementation
might look like figure 3.

However such an implementation is not attractive in a
replicated-data parallel environment. Each process
would compute contributions to the intermediates that
would need to be summed up and redistributed to all
processes before the next step of the algorithm could
occur. This would significantly increase the amount and
frequency of communication and synchronization.
However we observe that in the term above, there is a
common index k in all summations. Taking advantage
of the concept of loop fusion, introduced in Section 3.2,
the k–loop can be pulled to the outside, so that the
intermediates I1 and I2 can essentially be treated as
rank-3 tensors for fixed k. If the k values are distributed
across the parallel processes, then each process can
compute the intermediates entirely locally, without
any need for communication, as shown in figure 4.

for k
assign task to next available processor
for l, i < j
I2(l,i,j; k) = sum (c<d) v(k; l,c,d)t(c,d,i,j)

for b, i<j
I1(b,i,j; k) = sum(l) I2(l,i,j;k)*t(b,l) + v(b,i,j;k)

for a<b, i<j
R(a,b,i,j) += sum(k ) I1(b,i,j; k) * t(a; k)

Figure 4. Pseudocode for a perfectly fused implementation of equation 2.

for k < l, i < j
I2(k,l,i,j) = sum (c<d) v(k,l,c,d) t(c,d,i,j)

for k,b, i<j
I1(k,b,i,j) = sum(l) I2(k,l,i,j)*t(b,l) + v(k,b,i,j)

for a<b,i<j
R(a,b,i,j) = sum (k) I1(k,b,i,j) * t(a,k)

Figure 3. Pseudocode for a simple implementation of equation 2. I1 and I2 denote intermediate quantities.
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In this representation, we separate k from the other
indices with a semicolon (‘‘;’’) as a reminder that this
index is fixed. The k–loop can be tiled according to the
available memory and disk resources, so that k is not a
single index value, but a small range. The likelihood of
fitting the smaller, fused intermediates into memory is
another significant advantage of this approach.
Coupled-cluster-type equations can always be

factored in such a way that it is possible to perfectly
fuse them and pull one or more indices to the outside of
the entire term. A rule of thumb to obtain a suitable
factorization is that the first intermediate (I2 here) must
always include the Hamiltonian term v, and that the
indices that can be pulled out are the summation indices
of the contraction of the final intermediate (I1 here) to
update the residual (R).
It is worth noting that taking advantage of the

loop-fusion opportunity requires giving up the permuta-
tional symmetry k < l which was present in the original
algorithm. Therefore, the fused algorithm includes some
redundant computation. This is a common trade-off,
and one which we are working on including in the
o-TCE, so that the choice to use the permutational
symmetry or take advantage of a loop fusion
opportunity can be made based on the relative costs of
the two alternatives.
The parallelization strategy for this approach is

already indicated in the pseudocode above. The work
is farmed out across the processors at the level of the
k-loop, and each task can be carried out locally, without
requiring communication. Using this parallelization
strategy, it is possible, within a CCSD iteration,
for each process to calculate its contribution to the
t–amplitude residuals in an entirely local fashion using
the replicated integrals and amplitudes, and the pro-
cesses need not be synchronized during this computa-
tion. Once all local residual contributions are complete,
they must be accumulated to form the complete residual,
and then distributed back to all processes.
To reduce the replicated storage required for

integrals, we have chosen to implement the terms
involving integrals with four virtual orbital labels
(referred to as the abcd term) in the AO basis. This
involves back-transforming the t–amplitudes from the
MO to the AO basis (at a cost of roughly o2v2Nþ o2vN2

operations for N AO basis functions), contracting with
the pre-computed AO integrals, and transforming the
result back to the MO basis. This transformation may
be carried out as a parallel operation or the computation
may simply be carried out redundantly local to each
process. The parallel option tends to perform best with
high-performance network interconnects, while on
systems with slow networks the redundant sequential
algorithm gives better overall performance. A secondary

benefit of using the AO basis representation of the abcd
term is that the resulting parallel tasks tend to be
relatively small. By performing this step after all of the
MO-basis steps in the CCSD iteration, these small tasks
can be dynamically allocated to ‘‘even out’’ any load
imbalance that may have occurred in the MO steps,
which includes a small number of relatively large tasks.

The equations for the (T) correction can be
summarized as:

Tabc
ijk ¼ Pði=jkÞPða=bcÞ

X
m

Tab
imV

cm
jk þ

X
e

Tae
ij V

bc
ek

~TTabc
ijk ¼ Pði=jkÞPða=bcÞTa

i V
bc
jk

E ½4� ¼
X
abcijk

Tabc
ijk Tabc

ijk

Dabc
ijk

E ½5� ¼
X
abcijk

Tabc
ijk

~TTabc
ijk

Dabc
ijk

Where P stands for permutation operator, e.g.:

Pði=jkÞ f ði, j, kÞ ¼ f ði, j, kÞ � f ðj, i, kÞ � f ðk, j, iÞ

and D is the usual SCF energy denominator. The idea of
loop fusion is used in practically all implementations
of the perturbative triples correction to avoid storage of
6-index quantities, although it is usually not called by
that name. As the indices ijk and abc occur in all terms,
perfect loop fusion is possible. These indices are taken as
the outer loops, and for a given batch of indices all
contributions, including the various terms implied by
the permutation operators, are accumulated in memory.
This results in an algorithm which does not require any
storage of T3 amplitudes, as all fragments of the
intermediate quantities can be held in memory and
consumed immediately. In a replicated-data environ-
ment, the inputs to these equations are available in their
entirety on all processors, and parallelization is a
straightforward matter and can be carried out without
communication except for the final accumulation of
energy contributions from the individual processes.

It should be clear that the loop-fused replicated-data
parallel CCSD(T) algorithm is significantly different in
structure from the straightforward implementation of
the method. Implementing our approach by hand would
have required doing it from scratch rather than adapting
an existing code. One of the virtues of the TCE,
however, is that the code generation is just another
module of the tool, and can be changed to target
a different programming model and can be used to
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generate implementations of any many-body method for
which the model is appropriate. We have made extensive

use of the prototype TCE [45, 46] in implementing our

new approach. Minor modifications were required to the

generated code in various places, and the AO-basis abcd
terms were hand-coded since support for generating

AO-basis algorithms in the TCE is still under develop-

ment. The current implementation of the AO-basis abcd

term does not take advantage of molecular symmetry.
To illustrate this work, we present preliminary timing

results for a CCSD(T) calculation on ethylene run on

two different Beowulf clusters with very different

configurations. One is the ‘‘Mpp2 (phase 2a)’’ system
at the Molecular Science Computing Facility (MSCF)

[101] at Pacific Northwest National Laboratory

(PNNL), and the other is the ‘‘watsci’’ cluster at the

University of Waterloo. Mpp2 was designed and
configured to be used for large-scale parallel computing,

while watsci was intended primarily as a processor farm

for sequential jobs. Their node configurations are

summarized in table 4. The test case is the lowest cation
state of the ethylene molecule using the cc-pVTZ

basis [102] and a UHF reference state, giving o¼ 8/7

(alpha/beta spin) and v¼ 107/108 (beta spin). The initial

calculations were performed using D2h point-group
symmetry except for the AO-basis abcd term. The

CCSD calculation took 11 iterations to converge, and

the cost of the (T) correction is comparable to a single

CCSD iteration (primarily due to the AO-based
implementation of the abcd term).
Table 5 shows timings and parallel speedups for this

test case, broken down by the different tasks performed

by the code: the initial transformation of the AO

integrals to the MO basis, the iterative solution of the
CCSD equations (times are presented for a single

iteration), and finally, the (T) correction. We ignore the

SCF calculation required for the reference wavefunction
for the CCSD(T). Timings are broken down into phases

which are characteristic of replicated-data algorithms:

work that is performed in parallel across all processes,

work that is replicated and performed redundantly on
each process, and communications phases in which

partial results from each process are accumulated and

the results broadcast back to all processes. OnMpp2, the
MO/AO transformations in the abcd term are performed

using a parallel algorithm, while on watsci, they are

replicated. Also, on the Mpp2 cluster, only 2500 MB of

memory per processor were actually used.
Looking at the results, we see that the scalability of

the actual parallel work is very good in all aspects of the

calculation on Mpp2 (15 out of 16 processors) and

somewhat lower on watsci (10–13 processors out of 16).

This portion of the effort is, in principle, perfectly
parallel, so that any reduction from full scalability is due

to load imbalance. Because of the poor network on

watsci, the dynamic load balancing for the AO-abcd
term was done at a very coarse grain, which helps to

explain the poorer results on that cluster. The replicated

steps, by definition, should not scale at all, and

variations from a speedup of 1.0 are the result of
variations in external factors such as the activation

of operating system daemons. The communication-

intensive steps actually show slow-downs in all cases.

Although the data volume being communicated in this
calculation is not large (approximately 21 MB/process),

the fact that all processors are communicating simulta-

neously increases the likelihood of contention on the

network. This is particularly true for Ethernet, where
only one node can be sending data at a time on a given

switch (all nodes on the watsci cluster are connected to a

single switch). We are investigating these results and

the details of the all-to-all communication to look
for opportunities to improve the communication

performance.
The overall results illustrate that although the parallel

work itself scales very well, the poor scaling of the

communications phase, along with the non-scalable
replicated work can strongly impact the total perfor-

mance. On Mpp2, the overall scaling is 8.8 out of 16

processors, while on watsci it is only 2.8. We can see that
on both systems, the four-index transformation even-

tually dominates the overall calculation, even though it

is only OðN5Þ (while the triples correction is OðN7Þ). This

is not an aspect of the calculation in which we have
invested much effort so far, and there is certainly much

room for improvement here.

Table 4. Cluster node configurations.

Cluster Mpp2 Watsci

Processor Intel itanium 2 (IA-64) Intel celeron (IA-32)

Clock speed 1.5 GHz 2.0 GHz
CPUs per node 2 1
Network Quadrics QsNet (Elan-3) 100 Mb Ethernet

Memory 8192 MB 256 MB
Local disk space 430 GB 10 GB
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Since in this example, the triples correction is very
close in cost to that of a CCSD iteration, we also
performed a series of calculations in C1 symmetry on
Mpp2 to provide an example in which the triples
correction represents a much larger portion of the
overall computation. These results are shown in table 6.
In this case, we observe much better overall scaling

(80% parallel efficiency vs. 55% for the with-symmetry
calculation on Mpp2). The triples correction dominates
the total time for the calculation, and scales excellently.y
As a side note, it is interesting to observe that in

this case, using molecular symmetry is not a major
performance gain in some parts of the calculation.
The CCSD iteration time is essentially unaffected, and
the transformation slows down substantially when
symmetry is used. The likely cause of this is that with
symmetry, many of the blocks in the matrix
multiplication used to implement these steps are too
small to drive the processor to peak performance – the

lower overall operation count is offset by the fact that
the processor cannot perform them as efficiently. With
appropriate performance models, we anticipate that
this trade-off could be evaluated in advance and the
TCE-generated code could choose whether it was
advantageous to take advantage of symmetry or not.

In summary, we have taken advantage of the p-TCE’s
code generation capabilities to implement a new loop-
fused replicated-data parallel CCSD(T) algorithm.
Initial results indicate that the approach performs
reasonably well on cluster computers. Additional
effort is clearly needed to understand and improve the
performance of the communication phases of the
computation, as well as the transformation.

In the longer term, we anticipate that this particular
type of experimentation with the TCE will become
unnecessary. As has been mentioned several times,
our ultimate goal with the o-TCE is to be able to
generate code that accommodates a very broad range of

yWe attribute the ‘‘super-linear’’ speedup observed here (4.2 vs 4.0 ideal) to the fact that the speedup computation is referenced to
the four-processor time (the smallest configuration on which the calculation could be run) instead of the usual single-processor time.

Table 5. CCSD(T) calculation using the cc-pVTZ basis set for the Ethylene molecule in D2h symmetry. Wall time in seconds,
speedup factor with respect to one processor in parenthesis. For the Transformation and CCSD Iteration steps, timings are further

broken down by the phase of the computation.

Number of processors

Algorithm step 1 2 4 8 16

Mpp2 cluster

Transformation 699.3 382.1 (1.8) 210.9 (3.3) 132.5 (5.3) 99.4 (7.0)

Replicated 4.5 4.7 (0.9) 4.8 (0.9) 4.7 (1.0) 5.0 (0.9)
Parallel 640.1 336.3 (1.9) 163.8 (3.9) 82.5 (7.8) 42.2 (15.2)
Communication 12.1 13.8 (0.9) 20.3 (0.7) 27.2 (0.6) 32.5 (0.6)

CCSD iteration 83.5 42.1 (2.0) 21.9 (3.8) 12.0 (6.9) 7.6 (11.0)
Parallel 77.0 38.2 (2.0) 19.2 (4.0) 9.7 (7.9) 5.0 (15.5)

MO–AO (comm.) 6.0 3.4 (1.7) 2.2 (2.7) 1.7 (3.4) 1.8 (3.3)
Communication 0.4 0.5 (0.9) 0.5 (0.8) 0.6 (0.7) 0.8 (0.5)

(T) Correction 90.9 46.8 (1.9) 23.5 (3.9) 11.8 (7.7) 6.0 (15.1)

Overall CCSD(T) 1729 904.0 (1.9) 483.5 (3.6) 284.1 (6.1) 196.0 (8.8 )

Watsci cluster

Transformation 1075 756.4 (1.4) 708.5 (1.5) 852.9 (1.3) 982.4 (1.1)
Replicated 16.7 15.8 (1.1) 16.2 (1.0) 16.6 (1.0) 17.1 (1.0)
Parallel 934.3 491.6 (1.9) 263.6 (3.5) 144.8 (6.5) 71.0 (13.2)
Communication 51.8 156.8 (0.3) 288.6 (0.2) 496.4 (0.1) 658.4 (0.1)

CCSD iteration} 246.7 156.8 (1.6) 84.4 (2.9) 50.5 (4.9) 33.2 (7.4)

Parallel 240.6 148.0 (1.6) 75.7 (3.2) 40.1 (6.0) 19.7 (12.2)
MO–AO (repl.) 5.5 5.7 (1.0) 5.4 (1.0) 5.1 (1.1) 5.1 (1.1)
Communication 0.7 3.1 (0.2) 3.4 (0.2) 5.3 (0.1) 8.4 (0.1)

(T) Correction 207.2 119.9 (1.7) 68.0 (3.1) 36.6 (5.7) 20.8 (10.0)

Overall CCSD(T) 4049 2679 (1.5) 1760 (2.3) 1515 (2.7) 1453 (2.8)
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platforms based on their performance characteristics
rather than forcing the user to select the algorithm to be
used based primarily on intuition. The decision to use a
fully distributed algorithm or a replicated-data one,
decisions about which loops to fuse, where to take
advantage of geometric and permutational symmetries,
and other options can be evaluated automatically in
order to provide the user with the best performance for
the target platform and target problem. While this goal
remains some ways off, the essential optimization and
decision-making techniques are known and many have
been outlined in this paper.

5. Current status and future plans

In its conception, the Tensor Contraction Engine is one
of the most general and most complex efforts in
automatic code generation undertaken to date in the
chemistry community. Good progress has been made
already, with the prototype TCE (p-TCE) capable of
routine use and having already been used to generate
parallel implementations of more than 25 different
electronic structure methods, including CC, QCI,
EOM-CC, and relativistic versions of many of them,
thanks to the efforts of So Hirata [45–47]. We
conservatively estimate that these implementations
would have taken five years or more of effort to
implement by hand, but they were done with the TCE in
little more than the time it took to transfer the equations
to the appropriate form. Many of these implementations
are available in the latest versions of the NWChem
[39, 40] and UTChem [85, 86] packages.

The capabilities of the optimizing TCE (o-TCE) lag
somewhat those of the p-TCE because of the additional
complexities of the desired optimization capabilities
and the need to have a rigorous and detailed under-
standing of how they interact with characteristics such as
permutational, spin, and spatial symmetries inherent in
the chemistry and physics of the problem. The o-TCE
is current capable of generating code for a broad range
of methods and applying the various optimizations
discussed in Section 3. However incorporation of
permutational, spin, and spatial symmetries is presently
underway. We also plan to revise the way the generated
code interfaces with the host electronic structure
package in order to make it easier to hook TCE-
generated code to a broader range of host packages.

As has been mentioned, performance and parallel
scalability of the generated code are central to our
conception of the TCE. The optimization capabilities of
the o-TCE are constantly improving as we gain more
experience. The development of the tool has now
progressed to a point where we are beginning to
seriously examine performance issues in greater
depth. A code generation-based environment like the
TCE offers unprecedented benefits with respect to
delivering high-performance code. With appropriate
performance models for the target computer
(accounting for memory-access costs and other factors),
TCE optimizations can seek to minimize the actual
execution time of the generated code, rather than just
minimizing simpler metrics such as the number of
floating-point operations. Moreover, the TCE can
predict what the performance of the generated code
should be, based on the performance model, so that
deviations from the expected performance can be
flagged and used to refine the performance model.

We plan to explore a broader range of parallel-
programming models within the TCE, relating to both
code-generation and performance issues. In the previous
section we discussed a parallel-programming model that
was targeted for computers with large memory/disk
resources, but a poor parallel interconnect. Our long-
term vision is a unified model that would be able to
generate code for a broad range of parallel computers
based on the computer’s performance model and
resource information. Systems with large memory and
poor interconnects would naturally end up with TCE-
generated implementations based on replicated data
while those with better interconnects might get partly
or fully distributed algorithms. The size of the chemical
problem, also part of the input to the TCE, plays
a role as well. For example, the TCE would be able to
determine if the problem is too large for a replicated-
data algorithm on the target system and instead produce
a partly or fully distributed implementation if necessary.

Table 6. CCSD(T) calculation using the cc-pVTZ basis set
for the Ethylene molecule in C1 symmetry on the Mpp2 cluster.
Wall time in seconds, speedup factor with respect to four
processors in parenthesis. For Transformation and CCSD

Iteration steps, timings are further broken down by the phase
of the computation.

Number of processors

Algorithm step 4 8 16

Transformation 94.1 (1.0) 83.5 (1.1) 90.0 (1.0)

Replicated 5.7 (1.0) 6.0 (0.9) 5.2 (1.1)
Parallel 36.1 (1.0) 19.0 (1.9) 11.6 (3.3)
Communication 30.4 (1.0) 38.5 (0.8) 52.3 (0.7)

CCSD iteration 23.5 (1.0) 13.5 (1.7) 10.0 (2.4)
Parallel 20.2 (1.0) 10.2 (2.0) 6.1 (3.3)

MO–AO (comm.) 0.9 (1.0) 1.0 (1.0) 1.2 (0.8)
Communication 2.4 (1.0) 2.3 (1.0) 2.67 (0.9)

(T) Correction 1210 (1.0) 593.9 (2.0) 287.5 (4.2)

Overall CCSD(T) 1574 (1.0) 835.1 (1.9) 495.5 (3.2)
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The richest opportunities lie in the optimizations.
Most of the optimizations currently available in the
TCE were developed specifically for this project, and
new and improved optimization algorithms are con-
stantly being developed. There are also interesting
research questions around how multiple optimizations
interact, and how the order in which optimizations are
applied affects the final results.
Finally, we are interested in broadening the TCE as far

as possible within electronic structure theory, including,
for example, support for local correlation approaches,
and introducing the technology into other scientific
domains. The recent renaissance of coupled-cluster
methods for nuclear structure theory [103, 104] has
given us our first target, but we anticipate many others as
well. Optimizations and related technologies developed
within the TCE can also be adapted into more general
environments. For example, the data-locality optimi-
zation for managing out-of-core calculations could be
introduced into a traditional Fortran compiler (with
appropriate language extensions) to provide a tool that
would greatly simplify the writing of general (not
chemistry-specific) out-of-core algorithms [105].

6. Conclusions

We have described the Tensor Contraction Engine,
a tool for the automatic generation of code for a broad
spectrum of many-body methods. The overall design of
the TCE follows closely the architecture of traditional
optimizing compilers, and has been developed by a
team of both computational chemists and computer
scientists working in close collaboration.
The TCE addresses a number of different needs

within the high-end electronic structure community. The
nature of code generation itself, and the fact that it is
driven by a high-level language very similar to the way
the equations are expressed when they are derived,
allows a wide variety of methods to be expressed and
implemented quickly. In this sense, we anticipate that
the TCE will become a catalyst for new method
development by making the process so much simpler
and quicker compared to hand coding.
The ability to automatically generate parallel imple-

mentations is valuable for expanding the capabilities of
researchers who want to tackle larger or more expensive
problems, but who lack experience with parallelization
of chemistry software, or lack the time to do it by hand.
For many applications of this type, an extremely
high-performance parallelization is not necessary to
provide benefits to the user, and indeed this has already
been observed in the methods already implemented
using the p-TCE, as mentioned in the previous section.

Many of these methods received their first-ever parallel
implementation via the TCE.

Finally, we view the TCE as a tool for high-end
computational chemistry, where in order to solve the
problems of interest, there is a need to extract the
utmost performance from the wide variety of architec-
tures now available at the edge of high-performance
parallel computing. As we improve the code generation
and optimization capabilities, we anticipate that it will
become possible to routinely generate code with the TCE
that meets or exceeds the performance of hand-coded
implementations in most cases.

With some further effort, we anticipate that the TCE
will be able to produce near-optimal high-performance
parallel code for a wide range of electronic structure
methods in a fraction of the time required for hand
coding. We believe that the widespread availability and
use of tools of this kind will facilitate a shift of effort
away from the complex and often tedious programming
challenges associated with advanced electronic structure
methods and toward a focus on development of the
methods themselves and the chemical problems they can
address.
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