
J. Parallel Distrib. Comput. 66 (2006) 659–673
www.elsevier.com/locate/jpdc

Efficient synthesis of out-of-core algorithms using a nonlinear
optimization solver�

Sandhya Krishnana, Sriram Krishnamoorthya,∗, Gerald Baumgartnerb, Chi-Chung Lama,
J. Ramanujamc, P. Sadayappana, Venkatesh Choppellaa,d

aDepartment of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
bDepartment of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA

cDepartment of Electrical and Computer Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
dIndian Institute of Information Technology and Management—Kerala, Technopark, Thiruvananthapuram, Kerala 695 581, India

Received 8 August 2004; received in revised form 1 February 2005; accepted 6 June 2005

Abstract

We address the problem of efficient out-of-core code generation for a special class of imperfectly nested loops encoding tensor
contractions arising in quantum chemistry computations. These loops operate on arrays too large to fit in physical memory. The problem
involves determining optimal tiling of loops and placement of disk I/O statements. This entails a search in an explosively large parameter
space. We formulate the problem as a nonlinear optimization problem and use a discrete constraint solver to generate optimized out-of-
core code. The solution generated using the discrete constraint solver consistently outperforms other approaches by up to a factor of four.
Measurements on sequential and parallel versions of the generated code demonstrate the effectiveness of the approach.
© 2005 Published by Elsevier Inc.

Keywords: Data locality optimization; Out-of-core algorithms; Program transformation; Compiler optimization; Discrete constrained search; Tensor
contractions

1. Introduction

Many scientific and engineering applications need to oper-
ate on data sets that are too large to fit in the physical memory
of the machine. We focus on the domain of electronic struc-
ture calculations in quantum chemistry [17,36,40]. These
calculations require contractions (generalized matrix multi-
plications) of multi-dimensional tensors that are often larger
than available physical memory. In such situations, it is
necessary to develop out-of-core algorithms that explicitly

� Supported in part by the National Science Foundation through Grants
CHE-0121676, CHE-0121706, CCF-0073800 and EIA-9986052.

∗ Corresponding author.
E-mail addresses: krishnas@cse.ohio-state.edu (S. Krishnan),

krishnsr@cse.ohio-state.edu (S. Krishnamoorthy), gb@csc.lsu.edu
(G. Baumgartner), clam@cse.ohio-state.edu (C.-C. Lam), jxr@ece.lsu.edu
(J. Ramanujam), saday@cse.ohio-state.edu (P. Sadayappan),
choppell@iiitmk.ac.in (V. Choppella).

0743-7315/$ - see front matter © 2005 Published by Elsevier Inc.
doi:10.1016/j.jpdc.2005.06.017

orchestrate the movement of blocks of data between main
memory and secondary disk storage. We are developing a
program synthesis tool called the Tensor Contraction Engine
(TCE) [4,5] to facilitate the development of parallel pro-
grams for this domain, by automatically transforming high-
level tensor contraction expressions into efficient parallel
programs.

In this paper, we address the following problem that
arises in the context of the TCE system. We are given an
imperfectly nested loop structure containing a collection of
tensor contraction computations expressed in an “abstract”
form, that is, without concern for whether the arrays can fit
within available physical memory. The problem consists of
generating a “concrete” form of the code by suitably tiling
the loops and inserting the necessary disk I/O statements so
as to minimize the total cost of disk I/O. In the case of code
generation for a parallel system, the problem also involves
distributing the workload among processors and inserting

http://www.elsevier.com/locate/jpdc
mailto:krishnas@cse.ohio-state.edu
mailto:krishnsr@cse.ohio-state.edu
mailto:gb@csc.lsu.edu
mailto:clam@cse.ohio-state.edu
mailto:jxr@ece.lsu.edu
mailto:saday@cse.ohio-state.edu
mailto:choppell@iiitmk.ac.in

660 S. Krishnan et al. / J. Parallel Distrib. Comput. 66 (2006) 659–673

the required communication. The search space of possible
placements of the disk I/O statements and possible combi-
nations of tile sizes is explosively large. We formulate the
problem as a non-linear optimization problem and use a
general-purpose discrete constraint solver to generate opti-
mized out-of-core code.

The paper is organized as follows: in Section 2, we ex-
plain the computational context for which the data locality
optimization approach is developed. In Section 3, we review
related work in the area. Section 4 describes the Discrete
Constrained Search (DCS) solver [9,51–53] and outlines
the steps used to convert the abstract code specification
into concrete code. Section 5 illustrates the code-generation
process using a representative example. Our experimen-
tal results in Section 6 demonstrate that the DCS-based
approach to out-of-core code generation is efficient and
effective.

2. The computational context

The optimization presented in this paper has been devel-
oped in the context of the TCE [5,13], a domain-specific
compiler for ab initio quantum chemistry calculations.
The TCE takes as input a high-level specification of a
computation expressed as a set of tensor contraction ex-
pressions and transforms it into efficient parallel code.
Several compile-time optimizations are incorporated into
the TCE: algebraic transformations to minimize operation
counts [33,34], loop fusion to reduce memory require-
ments [30–32], space–time trade-off optimization [11],
communication minimization [12], and data locality opti-
mization [13,14] of memory-to-cache traffic.

A tensor contraction expression comprises a collection
of multi-dimensional summations of the product of sev-
eral input arrays. As an example, consider the following
contraction, used often in quantum chemistry calcula-
tions to transform a set of two-electron integrals from an
atomic orbital (AO) basis to a molecular orbital (MO)
basis:

B(a, b, c, d) =
∑

p,q,r,s

C1(s, d) × C2(r, c) × C3(q, b)

×C4(p, a) × A(p, q, r, s).

This contraction is referred to as a four-index transform.
Here, A(p, q, r, s) is a four-dimensional input array initially
stored on disk, and B(a, b, c, d) is the transformed output
array to be placed on disk at the end of the computation.
The arrays C1–C4 are called the transformation matrices.
In practice, these four arrays are identical; we identify them
by different names in order to be able to distinguish them
in the text.

The indices p, q, r, and s have the same range N, denoting
the total number of orbitals, which is equal to O + V . O
denotes the number of occupied orbitals and V denotes the

number of unoccupied (virtual) orbitals. Likewise, the index
ranges for a, b, c, and d are the same, and equal to V. Typical
values for O range from 10 to 300; the number of virtual
orbitals V is usually between 50 and 1000.

The calculation of B is done in the following four steps
to reduce the number of floating point operations from
O(V 4N4) in the initial formula (8 nested loops, for p, q, r,
s, a, b, c, and d) to O(V N4)

B(a, b, c, d) =
∑

s

C1(s, d) ×
(∑

r

C2(r, c)

×
(∑

q

C3(q, b) ×
(∑

p

C4(p, a)

× A(p, q, r, s)

)))
.

This operation-minimization transformation results in the
creation of three intermediate arrays

T 1(a, q, r, s) =
∑
p

C4(p, a) × A(p, q, r, s),

T 2(a, b, r, s) =
∑
q

C3(q, b) × T 1(a, q, r, s),

T 3(a, b, c, s) =
∑

r

C2(r, c) × T 2(a, b, r, s).

Assuming that the available memory less than V 4 (which for
V = 800 and double precision arrays is about 3T B), none of
A, T 1, T 2, T 3, and B can fit entirely in memory. Therefore,
the intermediates T 1, T 2, and T 3 need to be written to disk
on production, and read from disk before consumption in the
next step. Since none of these arrays can be fully stored in
memory, it may not be possible to perform all multiplication
operations by reading each element of the input arrays from
the disk only once. This could result in the amount of disk
I/O volume being much larger than the total volume of the
data on disk.

For illustration purposes, we focus on the following con-
traction (a two-index transform):

B(m, n) =
∑
i,j

C1(m, i) × C2(n, j) × A(i, j).

The operation minimal form of the two-index trans-
form and the corresponding intermediate array are as
follows:

B(m, n) =
∑

i

C1(m, i) ×
⎛
⎝∑

j

C2(n, j) × A(i, j)

⎞
⎠ ,

T (n, i) =
∑
j

C2(n, j) × A(i, j).

S. Krishnan et al. / J. Parallel Distrib. Comput. 66 (2006) 659–673 661

Fig. 1. Example of the use of loop fusion to reduce memory requirements. Loops i and n are fused to reduce T to a scalar: (a) unfused code, (b) compact
notation and (c) fused code.

Fig. 1 shows the computation of the array B and illustrates
how memory requirements for the computation of B may
be reduced using loop fusion. Such an “abstract form” of
the computation cannot be directly compiled and executed
because it does not take into account the available physi-
cal memory (if the arrays fit within the virtual memory, ex-
ecution of the compiled code is possible, but will exhibit
extremely poor performance due to excessive overhead of
paging to move virtual memory pages between disk and
physical memory). The transformation of abstract forms into
concrete forms that can be efficiently executed is addressed
in Section 4. Concrete forms have explicit disk I/O state-
ments to move data between disk-resident arrays and their
in-memory counterparts. Fig. 1(a) shows the abstract form of
the computation before loop fusion. The computation con-
sists of two loop nests: a first loop that produces the inter-
mediate T (1 : V, 1 : N), and a second loop that uses T to
produce the result B(1 : V, 1 : V).

In Fig. 1(b), each loop nest is abbreviated as a single
“For’’ loop with a sequence of indices. Fig. 1(c) illustrates
the result of loop fusion. Note that all loops in each of the
two loop nests in Fig. 1(a) are fully permutable and there
are no fusion-preventing dependences between the loops.
Hence, the common loops i and n, shown underlined, can
be fused. After loop fusion, the storage requirements for T
can be reduced because there is no longer a need for an
explicit dimension of T corresponding to any loop indices
that are fused between the producer of T and the consumer
of T—storage elements can be reused over sequential iter-
ations of fused loops. In this example, T can be contracted
to a scalar as shown in Fig. 1(c). Although the total num-
ber of arithmetic operations remains unchanged, the sig-
nificant reduction in size of the intermediate array T im-
plies that it may be completely stored in memory, with-
out the need for any disk I/O for it. In contrast, if V × N

is larger than the available memory, the unfused version
would result in T being written out to disk after it is pro-
duced in the first loop, and then read in from disk for the
second loop.

Given a fused abstract form of the computation, in the
form of an imperfectly nested loop structure (i.e., a nested
loop structure in which at least one loop other than the
inner-most contains more than one statement, as in Fig. 1(c))
the out-of-core code-generation process requires consider-
ation of a number of issues. Each loop in the imperfectly
nested loop structure is split into a tiling and an intra-
tile loop. Given a tiled loop structure, there are a num-
ber of different candidate positions for placing disk I/O
statements. Thus, a search space consisting of two dimen-
sions, placement of disk read/write statements and the tile
sizes, needs to be explored. A disk I/O statement transfers
blocks of data between the disk resident array and its in-
memory counterpart. The size of the in-memory buffer is a
function of the tile sizes and placement of the correspond-
ing disk I/O statement. The task of the out-of-core code-
generation algorithm is to tile the loops, determine the op-
timal placements of disk I/O statements, and tile sizes that
minimize the disk I/O cost while satisfying the memory limit
constraints.

3. Related work

We have addressed various issues arising in the synthesis
context described above focusing primarily on minimizing
memory-to-cache data movement [13,14]. In Cociorva et
al. [14], we developed an integrated approach to fusion and
tiling transformations for a restricted class of loops arising in
the context of our program synthesis system; these assumed
restrictions were subsequently removed [13]. We developed
a tile size search procedure to estimate the total capacity
miss cost for each of a large number of combinations of tile
sizes for the various loops of an imperfectly nested loop set.
After finding the best combination of tile sizes, we made ad-
justments to address spatial locality considerations—by ad-
justing the tile sizes for any loop indexing the fastest vary-
ing dimension of any array to be larger than the cache line
size.

662 S. Krishnan et al. / J. Parallel Distrib. Comput. 66 (2006) 659–673

Krishnan [28] extended this approach to the disk-memory
hierarchy using a greedy approach to disk read/write place-
ment. For each set of tile sizes, Krishnan’s algorithm places
read/write statements immediately inside those loops at
which the memory limit is just exceeded. In Krishnan et
al. [29], we describe an algorithm to determine effective
tile sizes. This algorithm explores the tile size search space
using the set of candidate fusion structures with disk I/O
placements as input. The search space was divided into fea-
sible and infeasible solution spaces and their boundary was
shown to contain the optimal solution. We developed an al-
gorithm to locate the boundary efficiently and used steepest
ascent hill-climbing to determine an efficient solution for
the tile sizes.

There has been some work in the area of software tech-
niques for optimizing disk I/O. These include parallel
file systems, compile time [6–8,21–23,43,46] and run-
time libraries and optimizations [10,49]. Several compiler
techniques for optimizing out-of-core programs in high-
performance Fortran are discussed in [6,7]. Bordawekar
et al. [8] develop a scheduling strategy to eliminate addi-
tional I/O arising from communication among processors.
Solutions to choreographing disk I/O with computation are
presented by Paleczny et al. [46]; they organize computa-
tions into groups that operate efficiently on data accessed
in chunks. Compiler-directed pre-fetching is discussed by
Mowry et al. [43], which is orthogonal to compiler trans-
formations discussed in this paper. ViC* (Virtual C*) [16]
is a preprocessor that transforms out-of-core C* programs
into in-core programs with appropriate calls to the ViC* I/O
library. Kandemir et al. [21–23] developed file layout and
loop transformations for reducing I/O. None of these tech-
niques address model-driven automatic tile size selection
for optimizing I/O and all of them deal only with perfectly
nested loops.

Considerable research on loop transformations for lo-
cality in nested loops has been reported in the litera-
ture [15,37,38,41,54]. Nevertheless, a performance-model
driven approach to the integrated use of loop fusion and
loop tiling for enhancing locality in imperfectly nested
loops has not been addressed in these works. Loop tiling
for enhancing data locality has been studied extensively
[3,15,24–26,47,48,54,55], and analytical models of the im-
pact of tiling on locality in perfectly nested loops have been
developed [20,35,42]. Mitchell et al. [42] provide analytical
models for multi-level tiling of matrix–matrix multiplica-
tion. Ahmed et al. [1,2] have developed a framework that
embeds an arbitrary collection of loops into an equivalent
perfectly nested loop that can be tiled; this allows a cleaner
treatment of imperfectly nested loops. Lim et al. [39] devel-
oped a framework based on affine partitioning and block-
ing to reduce synchronization and improve data locality.
Specific issues of locality enhancement, I/O optimization
and automatic tile size selection have not been addressed
in the works that can handle imperfectly nested loops
[1,2,39,48].

4. Proposed approach

We use the DCS solver to compute the best placement
of disk I/O statements that would minimize the disk ac-
cess cost while satisfying the memory limit constraints.
DCS [9,51–53] is a software package for determining the
constrained global minima (CGM) in the discrete variable
space of a single-objective, discrete, constrained non-linear
programming problem (NLP). A web interface to the DCS
solver is available [50]. It uses AMPL, A Modeling Lan-
guage for Mathematical Programming [19], as the problem
input format. Due to the limitations in AMPL in modeling
arbitrary discrete variables, their current implementation can
only solve problems with continuous variables by discretiz-
ing them.

The out-of-core code-generation process translates the ab-
stract code into concrete code by loop tiling and placement
of disk I/O statements. We fully explore the search space of
disk I/O placements and tile sizes by formulating the search
as a non-linear constrained minimization problem, where
the objective function is the disk I/O cost. The solution to
be determined is constrained by the memory limit and min-
imum I/O block size for efficient disk I/O. We input the for-
mulated non-linear problem to the DCS system, which de-
termines the optimal combination of placement of disk I/O
statements and tile sizes.

We continue with the two-index transform example in-
troduced in Section 2 for transforming atomic orbitals into
molecular orbitals. Fig. 2(a) shows an abstract code for the
two-index transform. We assume that the arrays involved are
too large to fit into the physical memory of the machine.
The arrays involved in the loop structure fall into the fol-
lowing three categories: input arrays that initially reside on
disk (A, C1 and C2), intermediate arrays produced and con-
sumed within the computation and not required on comple-
tion (T), and output arrays that must finally be written to
disk (B). Fig. 2(b) shows the parse tree corresponding to the
abstract code in Fig. 2(a). To simplify the tree representa-
tion, each sequence of perfectly nested loops is represented
by a single-node labeled with the corresponding sequence
of loop indices.

The input to the out-of-core code-generation algorithm
consists of the abstract code, the loop ranges and the memory
limit of the machine. The algorithm consists of the following
three steps:

(1) Loop tiling: We split each loop into a tiling loop and an
intra tile loop and propagate the intra tile loops down
to the leaves. For example, as shown in Fig. 3, loop i is
split into tiling loop iT and intra-tile loop iI. Fig. 3(b)
shows the parse tree for the tiled abstract code in
Fig. 3(a).

(2) Candidate placements: For each array, we enumerate
all feasible placements of disk read/write statements.
Any placement surrounded by a loop index that is not
involved in the I/O statement is ignored, as this I/O

S. Krishnan et al. / J. Parallel Distrib. Comput. 66 (2006) 659–673 663

Fig. 2. Example of abstract code and corresponding parse tree for 2-index transform: (a) abstract code for the 2-index transform and (b) parse tree for
the 2-index transform.

Fig. 3. Example of abstract code and corresponding parse tree for the tiled version of the 2-index transform: (a) abstract code for the tiled 2-index
transform and (b) parse tree for the tiled 2-index transform.

statement can be moved out of the loop reducing the I/O
cost.

(3) DCS Input construction: Given the enumeration from
step 2, we construct non-linear equations for the objec-
tive function and constraints and provide them as in-
put to the DCS solver. The DCS solver outputs the disk
read/write placement for each array and the tile sizes
that minimize the disk I/O cost and satisfy the memory
limit constraint.

4.1. Candidate placements

Given a tiled imperfectly nested loop structure (Fig. 3),
we consider various possible placements of reads for input
arrays, reads and writes for intermediates, and writes (and
reads, if required) for output arrays. In enumerating the can-
didate placements, there are some constraints that must be
satisfied.

(1) Input array constraints: The read statement for an input
array may only be placed to be executed before the state-
ment where it is consumed. For example, in Fig. 3(a),
the read for input array A can be placed anywhere before
line 7.

(2) Output array constraints: The write for an output array
may only be placed after the statement where it is pro-
duced. For example, in Fig. 3(a), the write for output
array B can be placed anywhere after line 9.

(3) Intermediate array constraints: For intermediate arrays,
we have two cases to consider: the array is either kept in
memory or written to disk. If the array is kept in mem-
ory, there will be no disk I/O statements inserted for the
array. On the other hand, if it is written to disk, there is
a constraint imposed on its disk read/write placement.
For example, in Fig. 3(a), intermediate T is produced
in statement 7 and consumed in statement 9. If we con-
sider these statements in the parse tree in Fig. 3(b), the
lowest common ancestor for both the statements is loop
nT. The write statement for the production and read
statement for the consumption must be inside this nT
loop.

The approach to enumerating the placements for input,
output and intermediate arrays is sketched below; details
may be found in [28].

(1) Input arrays: Each loop index surrounding the consump-
tion of an input array is considered as a candidate po-
sition for placing the read. At any candidate position, if

664 S. Krishnan et al. / J. Parallel Distrib. Comput. 66 (2006) 659–673

Fig. 4. Candidate I/O placements and final concrete code. Nm = Nn = 35 000, Ni = Nj = 40 000, memory limit = 1 GB, double precision arrays: (a)
candidate I/O placements and (b) final concrete code for 2-index transform.

there exists a redundant loop immediately surrounding
it, then we ignore that position and move further up. A
redundant loop for a read statement is one that does not
index the array being read. We also ignore those read
placements that cause the in-memory version of the in-
put array to be a scalar or a vector. This is because the
resulting concrete code will involve in-memory matrix–
matrix products using level-3 BLAS kernels [18], and
scalar and vector operands will result in poor perfor-
mance. Consider the abstract tiled code in Fig. 3. All
loops surrounding statement 7 are candidate positions
for placing the read for array A. Loops jI and nI are ig-
nored so that the in-memory version of array A is at least
two-dimensional. Loop jT is not considered because the
surrounding loop nT is redundant for array A. Another
important check that needs to be made is that the in-
memory version of the array fits in memory. For every
candidate position, we compute the memory cost of the
corresponding local buffer assuming a tile size of one.
If the buffer does not fit in memory, we do not move
further up.

(2) Output arrays: The algorithm for enumerating write
placements for an output array is exactly the same as
that for input arrays, except that if any redundant loop
surrounds the write statement, we need to insert a corre-
sponding read for the array before the production. This
is required as we will be re-accessing the disk array for
every iteration of the redundant loop. For example, con-
sider statement 9 in Fig. 3(a), where the output array B
is produced. If the write for array B is placed just after
loop mT, an extra read will be required as the write will
be surrounded by the redundant loop iT.

(3) Intermediate arrays: If an intermediate array is written
to disk, the algorithm for enumerating the disk read/write
statements is exactly the same as for input/output arrays,

except that the constraint specified earlier for interme-
diate arrays must be satisfied.

Fig. 4(a) shows the candidate read and write placements
computed for each array in the code shown in Fig. 3(a).
Fig. 4(b) shows the final concrete code for the two-index
transform using the candidate read and write placements
shown in Fig. 3(a). Note that in Fig. 4(b), for a loop index
x, the index of the tiling loop is denoted xT and the index of
the intra-tile loop is denoted xI; in addition, the tile size for
this loop index is denoted Tx.

4.2. DCS input construction

If all possible combinations of disk I/O placements, shown
in Fig. 4(a), are considered for all the arrays, a very large
number of cases will have to be evaluated. Our approach to
avoid explicit evaluation for each combination of I/O place-
ments is to encode the placement into the formulation of
a nonlinear optimization problem that is input to the DCS
system, as explained below. DCS attempts to minimize an
objective function subject to equality and inequality con-
straints. The input to DCS consists of input parameters,
variables, objective function, and a set of constraints.

4.2.1. Input parameters
The input parameters for our problem are the memory

limit of the machine and the ranges Ni, Nj, . . . of the loop
indices i, j,

4.2.2. Variables
The variables in our case include tile sizes Ti, Tj , . . . for

loops i, j, . . . where each tile size variable has a lower bound
of 1 and an upper bound of the full loop range. In addition to
tile size variables, placement variables, �i , i = 0, 1, 2, . . .,
are introduced for arrays having more than one candidate

S. Krishnan et al. / J. Parallel Distrib. Comput. 66 (2006) 659–673 665

placement. The placement variables corresponding to an ar-
ray encode all the possible placements for the disk I/O for
the array. The values chosen for these variables in the solu-
tion from the solver uniquely determine the disk I/O place-
ment for that array.

4.2.3. Objective function
The objective function for our problem is the disk I/O

cost. The disk I/O cost for an I/O statement is the product
of the size of the array being read/written and the ranges
of any redundant loops surrounding the statement. Consider
the two possible read placements for input array A shown
in Fig. 4(a). For the first read placement above loop iI, the
disk I/O cost will be:

D1A = (Nn/T n) × SizeA,

where the total size of array A is multiplied by the range of
the redundant loop nT. The disk I/O cost for the second read
placement (above loop nT), is D2A = SizeA. Since there
are two possible placements for A, �log2(2)� = 1 placement
variable �0 is introduced as follows to express the disk I/O
cost:

(�0 × D1A) + ((1 − �0) × D2A).

If �0 = 1, the first placement is selected, else if �0 = 0, the
second one is selected. As explained later, the placement-
encoding variables are constrained to have a value of 0 or 1.

4.2.4. Constraints
The total space utilized for in-memory buffers is con-

strained to be within the memory limit. A static memory cost
model is used, in which all the in-memory buffers are allo-
cated memory at compile time. The total memory cost is the
sum of the memory usage for all the individual in-memory
buffers. The memory cost for an in-memory buffer is the
product of the ranges of its indices. The memory cost expres-
sion for array A can be constructed, along the same lines as
the disk cost expression, as follows. For the read placement
above loop iI, the in-memory buffer for input array A will be
A[iI, jI], which makes the memory cost M1A = T i × Tj .
On the other hand, for the read placement above loop nT,
the in-memory buffer is A[iI, j], thus making the memory
cost M2A = T i × Nj . The memory limit constraint using
placement variable �0 is

(�0 × M1A) + ((1 − �0) × M2A)�MemoryLimit.

The placement variables are constrained to take values 0 or
1 as follows:

�i × (1 − �i) = 0, i = 0, 1, 2

We also introduce constraints on the minimum size of the
in-memory version of an array. The arrays are stored in a
blocked fashion on disk. The block sizes of the arrays are
equal to the size of their in-memory versions, determined
by the out-of-core code generation algorithm. A block is the

basic unit of I/O and is chosen to be large enough to make
the disk seek time negligible compared to the block trans-
fer time. Krishnamoorthy et al. [27] observed that the incre-
mental improvement obtained in the ratio of transfer time
to seek time became negligible, and approached the perfor-
mance of sequential I/O, beyond a certain block size. The
in-memory version of the array, and hence the block size, is
constrained to be larger than this block size. For the system
on which the experiments were conducted, and whose con-
figuration is described in Section 6, the block size for reads
must be at least 2 MB, while that for writes must be at least
1 MB.

In this manner, we can construct disk cost, memory
cost and other constraint expressions for all arrays. Using
these expressions, we build the input to DCS using the
AMPL format [19]. DCS minimizes the objective func-
tion, that is, the disk I/O cost expression, while satisfying
the memory limit, placement variable and buffer size con-
straints. DCS outputs values for the placement variables and
tile sizes, thus providing the parameters for the concrete
code.

The code generated for a multi-processor system uses
the Global Arrays (GA) and Disk Resident Arrays (DRA)
libraries [44,45]. GA provides a shared-memory program-
ming model while encouraging locality of access. DRA
extends the shared-memory model to secondary storage.
GA/DRA provide an array abstraction in which the por-
tion of data to be accessed is specified as a section of the
array. In the generated code, the reads and writes from
the disk are performed by the read and write routines in
DRA. The in-memory computation is performed using
kernel matrix multiplication libraries in GA. The I/O op-
erations and the in-memory computations are collective
operations.

5. Illustration

In this section, we illustrate the process of code genera-
tion using the 4-index transform. Consider the abstract code

Fig. 5. Abstract code for the 4-index transform example.

666 S. Krishnan et al. / J. Parallel Distrib. Comput. 66 (2006) 659–673

Fig. 6. Abstract code for the tiled 4-index transform.

Table 1
Candidate disk I/O placements and placement variables for the arrays in the 4-index transform

Array Possible placements Placement
variables

T1 In Memory + {pI, aI, sT , rT , pT} × {bI, aI, qT , sT , bT} �0—�4
C4 {qT , pT , aT} �5—�6
A {aI, sT , rT , qT} �7—�8
T2 In Memory + {rI, bI} × {rI, bI, cT}

+{qT} × {rI, bI} �9—�12
C3 {aI, rT , aT} �13—�14
T3 In Memory + {rI, bI, aI, cI} × {cI, bI, aI, dT , cT}

+{rT } × {cI, bI, aI, dT} �15—�19
C2 {aI, sT , aT} �20—�21
B {cI, bI, sT , dT , cT , bT} �22—�24
C1 {aI, sT , aT} �25—�26

for the 4-index transform in Fig. 5. The 4-index transform in-
volves four contractions, requiring three intermediate arrays.
These are T1, T2, and T3 in the abstract code shown. Loops
are fused so that two of the intermediates are significantly
reduced in size, leaving only T1 to be a four-dimensional ar-
ray. This fused abstract code was tiled and the intra-tile loops
were moved to be innermost in the loop structure. The tiled
abstract code for the 4-index transform is shown in Fig. 6.

Then, the possible placements for disk I/O statements are
enumerated for all the arrays. The enumeration starts at the
first tiling loop or the first redundant intra-tile loop and pro-
ceeds up the fusion graph. The list of candidate I/O place-
ments is shown in Table 1. An I/O placement for an array
denoted by a loop index specifies that the disk read (write)
for that array is inserted above (below) the loop correspond-
ing to that index, surrounding the use of the array. The
loops surrounding the update of an array are considered for
write placements, and those surrounding the read-only use
of an array are considered for read placements. The read
and write placements noted correspond to these loops. The
read (write) placements are shown for the input (output) ar-
rays. For intermediate arrays, the I/O cost for production

and consumption of the array are enumerated. This is shown
by the cross-product of the write and read placements. The
input and output arrays are disk-resident. The intermediate
arrays can potentially be in memory, which is also enu-
merated as a possible I/O placement. The placement vari-
ables allocated to each array are also shown in Table 1.
Consider the I/O placements enumerated for array T2. Ar-
ray T2 could be in memory, represented by the first “place-
ment” possibility. If T2 is disk-resident, there are three pos-
sible write and read placements, forming nine placement
pairs. Each placement pair uniquely determines the read and
write placement for that array. The placement pair qT ×
cT results in the read and write at the same node in the
fusion tree, and is equivalent to T2 residing in memory.
Hence it is discarded, leaving eight placements pairs, as
shown.

The I/O and memory costs are the sum total of I/O and
memory costs for all the arrays. Each possible placement of
I/O statement for an array has a potentially different con-
tribution to the I/O and memory cost. The contributions to
the I/O and memory cost by the array T1 for some of the
possible placements are shown in Table 2. Every element

S. Krishnan et al. / J. Parallel Distrib. Comput. 66 (2006) 659–673 667

Table 2
Contributions to disk I/O cost and memory cost by the array T1 in the 4-index transform

Placement variables I/O placement I/O cost (∗Size∗
T 18) Memory cost

�0 �1 �2 �3 �4 Produce Consume Read Write

1 1 1 1 1 In Mem In Mem 0 0 Na∗Nq∗Nr∗Ns∗8
1 1 1 1 0 pI bI Np/Tp Np/Tp Tq∗Tr∗Ts∗8
1 1 1 0 1 pI aI Np/Tp Np/Tp Ta∗Tq∗Tr∗Ts∗8
.
.
.

0 1 0 1 0 pT bI 1 Nb/Tb Ta∗Nq∗Nr∗Ns∗8
.
.
.

0 0 1 0 1 - - - - 2*MemSize
.
.
.

0 0 0 0 0 - - - - 2*MemSize

in a disk-resident array needs to be accessed from disk at
least once. The I/O cost shown is the factor of redundant
I/O over the minimum access of SizeT 1 ∗ 8, where SizeT 1
is the size of array T1 in the tiled code, and the size of
each element is 8. When the placement variables have value
11111, T1 is in memory and has no I/O cost. T1 has 25 pos-
sible placements and any values of placement variables that
are beyond 00110 do not correspond to any legal I/O place-
ment. These values for the placement variables are pruned
away by specifying the memory cost to be higher than the
available memory. The table also shows that the read and
write costs can potentially be different, as in the case of
placement variables being equal to 01010. When determin-
ing the overall I/O costs, the read and write costs can be
weighted by the average read and write times. Sequential ac-
cess (read/write) time was found to be a good approximation
of the actual access time, once the block size is larger than a
threshold.

The tile sizes are limited to the valid range by the con-
straints

1� T a, T b, T c, T d �190,

1� Tp, T q, T r, T s �180.

The constraints on the placement variables to limit their
values to either 0 or 1 is given by

∀i ∈ {0, . . . , 26}�i ∗ (1 − �i) = 0.

The I/O sizes are constrained to be large enough for efficient
I/O on the target system. The I/O sizes are just the size of
the in-memory buffers and hence can be computed from the
memory costs. The read and write constraints, respectively,
for the array T1 are given by

8 ∗
1∑

i,j,k,l,m=0

Placement(i, j, k, l, m)

∗ MemCost(i, j, k, l, m)� readbufsize,

Table 3
Parameters used in the construction of the optimization problem for the
4-index transform example

Mem. limit Min. read size Min. write size Read time Write time
(GB) (MB) (MB) (ns/byte) (ns/byte)

2 2 1 16 20

Table 4
Tile sizes for the 4-index transform example

Ta Tb Tc Td Tp Tq Tr Ts

48 95 95 190 90 60 180 180

8 ∗
1∑

i,j,k,l,m=0

Placement(i, j, k, l, m)

∗ MemCost(i, j, k, l, m)� writebufsize,

where

Placement(i, j, k, l, m)

=
⎧⎨
⎩

1 if (i = �0 ∧ j = �1 ∧ k

= �2 ∧ l = �3 ∧ m = �4),

0 otherwise.

The parameters to complete the construction of the optimiza-
tion problem are shown in Table 3. We determined the pa-
rameters for the Itanium-2 cluster at the Ohio Supercomputer
Center, discussed in Section 6. The parameters correspond
to a single-processor execution using local disks. The loop
bounds Na, Nb, Nc, and Nd are set to 190 and Np, Nq, Nr,
and Ns are set to 180. The array sizes (SizeA, SizeT 1, . . .)

are also specified.
The optimization problem thus constructed is solved using

the non-linear optimization solver. The result is interpreted
to obtain the concrete code shown in Fig. 7. The tile sizes
determined are shown in Table 4.

668 S. Krishnan et al. / J. Parallel Distrib. Comput. 66 (2006) 659–673

Fig. 7. Concrete code for the 4-index transform example. Np = Nq = Nr = Ns = 190, Na = Nb = Nc = Nd = 180. Memory limit = 2 GB.

6. Experimental results

We evaluated the developed approach, referred to as the
DCS approach, by comparing it with two alternatives. The
first, referred to as the equi-tile-size approach, is used in
state-of-the-art quantum chemistry codes. In this approach,
equal tile sizes are chosen for all loop indices. The tile sizes
are made large enough to fully utilize the available memory.
The placement of I/O statements is determined in a greedy
fashion. For a given set of tile sizes, the I/O statements are
placed at that position in the parse tree in which the total size
of the data accessed in that subtree, rooted at that position,
just fits in the available memory.

The second approach, referred to as the uniform sampling
approach, was developed for locality optimization of the
disk-memory hierarchy [13,28]. A greedy approach to disk
I/O placement is used, where for each set of tile sizes, the
algorithm places read/write statements immediately inside
those loops at which the memory limit is exceeded. The
tile size search space is sampled uniformly in a logarithmic
fashion along each dimension. This sampled search space is
then explored using a brute force approach.

Performance was evaluated on an Itanium-2 Cluster at the
Ohio Supercomputer Center. Each node in the cluster is a
dual Itanium-2 900 MHz system running Linux 2.4.18. Each
node has 4 GB of memory and an 80 GB SCSI hard disk. The

generated code was compiled using the Intel Itanium Fortran
Compiler for Linux (efc version 7.1). For code-generation
purposes, the physical memory available to the computation
is specified as half the available memory to minimize any
paging effects.

The performance of the concrete code generated by the
three approaches was evaluated for three computations. The
first is a three-contraction computation, whose abstract codes
are shown in Figs. 5 (four–index transform), 8 (CCD kernel),
and 9 (three–contraction). It is a synthetic computation, in
which the outputs of two tensor contractions are contracted
again. The loop structure of the computation is shown in
Fig. 9. This is a prevalent subtree in tensor contraction op-
erator trees, though it does not occur independently in many
codes. The problem size is varied by increasing the range
of the loop index a, with a corresponding increase in size
of the T array. The results are shown in Fig. 10. The size of
the T array is shown on the x-axis, with the predicted and
measured disk I/O cost shown along the y-axis. It can be
observed that the DCS approach is consistently better than
the uniform sampling approach, which in turn is superior to
using equal tile sizes. The experimentally measured perfor-
mance matches prediction very closely.

The second computation used for testing is the four-index
transform, which was introduced earlier. The imperfectly
nested loop structure shown in Fig. 5 was used. The number

S. Krishnan et al. / J. Parallel Distrib. Comput. 66 (2006) 659–673 669

Fig. 8. Abstract code for the kernel from the CCD equation.

Fig. 9. Abstract code for the three-contraction example.

of virtual orbitals (V) was varied, to vary the problem size.
Fig. 11 shows the predicted and measured disk I/O costs
for the various problem sizes considered, shown in terms
of the size of array A, the dominant input array affecting
the memory requirement. For this example too, the DCS ap-
proach is superior to uniform sampling, which is better than
the equi-tile-size approach. For the equi-tile-size approach,
the experimentally measured data is a bit lower than pre-
diction; we believe that this is a consequence of caching of
produced-consumed files in physical memory.

The third computation considered is a sub-computation
from the Coupled Cluster Doubles (CCD) equation
[17,36,40] for ab initio electronic structure modeling. The
computation is given by the loop structure shown in Fig. 8.
The predicted and measured disk I/O cost for various vir-
tual orbital ranges was evaluated. The results are shown in
Fig. 12. For this computation, the DCS approach is again
superior to the other two. However, surprisingly, we find
that the uniform sampling approach is not consistently bet-
ter than the equi-tile-size approach. We believe that this
is due to sharp peaks and troughs in the disk-IO-cost as a
function of tile size, causing uniform search to miss many
local optima.

Overall, the graphs show that the predicted disk I/O
closely matches the measured cost. The equal-tile-size
approach generally performs worse then the other two ap-
proaches, while the DCS approach performs consistently
better than the other two approaches. It is up to four times

better than the equal-tile-size approach and up to two times
better than the uniform sampling approach.

For the parallel context, we used the Global Arrays (GA)
[45] and Disk-Resident Arrays (DRA) [44] framework.
The GA model provides an abstraction of global shared
multi-dimensional arrays, transparently implemented on
systems with physically distributed memory. The DRA
model extends the global shared abstraction to disk-
resident multi-dimensional arrays, permitting an arbitrary
multi-dimensional segment of a DRA to be moved into a
memory-resident GA. The aggregate memory available on
all the processors was used as the memory available for
the computation, and tiling was done as in the sequential
case.

The measured disk I/O times for the parallel code gen-
erated for the three-contraction example and the four-index
transform are shown in Figs. 13 and 14 respectively. The
DCS approach performs significantly better than the other
approaches for the different processor counts considered.
In particular, considerable improvement in performance can
be observed for smaller processor counts. This shows the
improved resource-utilization by the DCS approach, poten-
tially enabling larger problems to be computed on a given
machine more efficiently.

6.1. Computational complexity of the three evaluated
approaches

The three approaches represent varying degrees of com-
plexity in the code generation process, in terms of the deter-
mination of I/O placements and tile sizes. With the equal-
tiles approach, the tile sizes and the I/O placements are de-
termined in a straightforward manner based solely on the
available memory. This approach vastly simplifies code gen-
eration, while not necessarily resulting in quality code. The
choice of equal tile sizes for all the arrays ignores various
aspects of the program such as the reuse characteristics of
the different arrays, thus resulting in sub-optimal code.

The uniform sampling approach takes a greedy approach
to placement of I/O statements, and searches the sample
space of possible tile sizes to choose the set of tile sizes that
minimize the I/O cost. The greedy I/O placement strategy,

670 S. Krishnan et al. / J. Parallel Distrib. Comput. 66 (2006) 659–673

0

200

400

600

800

1000

1200

1400

1600

0.7 0.9 1.0 1.2 1.3 1.5 1.6 1.8 1.9 2.1 2.7 3.9 4.5 5.1 6.0 7.2

Uniform Sampling Approach Equi-tile-sizes Approach DCS Approach

Predicted Disk I/O cost (seconds)

0

200

400

600

800

1000

1200

1400

1600

1800

0.7 0.9 1.0 1.2 1.3 1.5 1.6 1.8 1.9 2.1 2.7 3.9 4.5 5.1 6.0 7.2

Uniform Sampling Approach Equi-tile-sizes Approach DCS Approach

Measured Disk I/O cost (seconds)(a) (b)

Fig. 10. The (a) predicted and (b) measured disk I/O cost, in seconds, for the three-contraction example. The size of T array is shown along x-axis, in
gigabytes.

0

200

400

600

800

1000

1200

1.5 1.7 1.8 2.1 2.6 3.1 3.6 4.1 6.4 9.0 11.6

Uniform Sampling Approach Equi-tile-sizes Approach DCS Approach

Predicted Disk I/O cost (seconds)

0

200

400

600

800

1000

1200

1.5 1.7 1.8 2.1 2.6 3.1 3.6 4.1 6.4 9.0 11.6

Uniform Sampling Approach Equi-tile-sizes Approach DCS Approach

Measured Disk I/O cost (seconds)(a) (b)

Fig. 11. The (a) predicted and (b) measured disk I/O cost, in seconds, for the four-index transform. The size of A array is shown along x-axis, in gigabytes.

0

50

100

150

200

250

300

140 150 160 170 180 190 200 210

Uniform Sampling approach Equi-tile-sizes Approach DCS Approach

Predicted Disk I/O cost (seconds)

0

50

100

150

200

250

300

140 150 160 170 180 190 200 210

Uniform Sampling approach Equi-tile-sizes Approach DCS Approach

Measured Disk I/O cost (seconds)(a) (b)

Fig. 12. The (a) predicted and (b) measured disk I/O cost, in seconds, for the computation from the CCD equation. The virtual orbital ranges (V) are
shown along the x-axis.

while simplifying code-generation complexity, is not always
the best strategy. It also decouples the two phases of the
code-generation problem, thus potentially affecting the run-

ning time. Also, the sampling nature of the tile size search
does not always produce optimal code, while significantly
affecting code-generation time. The dimensionality of the

S. Krishnan et al. / J. Parallel Distrib. Comput. 66 (2006) 659–673 671

0

200

400

600

800

1000

1200

1 3 5 7

Uniform Sampling Approach Equi-tile-sizes Approach DCS Approach

2 4 6 8

Fig. 13. The measured disk I/O cost, in seconds, for the generated parallel
code for the three-contraction example. The number of processors is
shown along the x-axis.

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7

Uniform Sampling Approach Equi-tile-sizes Approach DCS Approach

2 4 6 8

Fig. 14. The measured disk I/O cost, in seconds, for the generated parallel
code for the four-index transform. The number of processors is shown
along the x-axis.

search space is linearly proportional to the number of loop
indices.

The DCS approach produces a composite cost function
combining the effects of I/O placements and tile sizes on
the disk I/O cost. The search over this composite space uses
heuristics established in the solver. The encoding of the I/O
placements is such that the search space to be explored for
the I/O placements increases logarithmically with the num-
ber of loop indices. Hence, the complexity of the sample
space to be explored is still linear in the number of loop in-
dices, while generally generating a more globally optimal
solution.

7. Conclusion

We have described an approach to the synthesis of out-
of-core algorithms for a class of imperfectly nested loops.
The approach was developed for the implementation in a

component of a program synthesis system targeted at the
quantum chemistry domain. The determination of optimal
placements of disk I/O statements and choice of tile sizes
requires search in a very large search space. By formulating
it as a non-linear constrained optimization problem, and use
of a general-purpose constrained optimization solver, code
was generated that outperforms other approaches by up to a
factor of four.

Acknowledgements

We sincerely thank Prof. Benjamin Wah and Yi Xin Chen
of the University of Illinois for their significant help with
using the Discrete Constrained Search (DCS) Solver. We
express our appreciation to the reviewers of the paper for
their suggestions. We are grateful to the Ohio Supercomputer
Center (OSC) for the use of their computing facilities.

References

[1] N. Ahmed, N. Mateev, K. Pingali, Synthesizing transformations for
locality enhancement of imperfectly-nested loops, in: Proceedings
of the ACM International Conference on Supercomputing, 2000, pp.
141–152.

[2] N. Ahmed, N. Mateev, K. Pingali, Synthesizing transformations for
locality enhancement of imperfectly-nested loops, Internat. J. Parallel
Programming 29 (5) (2001) 493–544.

[3] J. Anderson, S. Amarasinghe, M. Lam, Data and computation
transformations for multiprocessors, in: Proceedings of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, July 1995, pp. 166–178.

[4] G. Baumgartner, A. Auer, D. Bernholdt, A. Bibireata, V. Choppella,
D. Cociorva, X. Gao, R. Harrison, S. Hirata, S. Krishnamoorthy, S.
Krishnan, C. Lam, Q. Lu, M. Nooijen, R. Pitzer, J. Ramanujam, P.
Sadayappan, A. Sibiryakov, Synthesis of high-performance parallel
programs for a class of ab initio quantum chemistry models, Proc.
IEEE 93 (2) (2005) 276–292.

[5] G. Baumgartner, D. Bernholdt, D. Cociorva, R. Harrison, S. Hirata,
C. Lam, M. Nooijen, R. Pitzer, J. Ramanujam, P. Sadayappan, A high-
level approach to synthesis of high-performance codes for quantum
chemistry, in: Proceedings of the Supercomputing 2002, November
2002.

[6] R. Bordawekar, Techniques for compiling I/O intensive parallel
programs, Ph.D. Thesis, Department of Electrical and Computer
Engineering, Syracuse University, April 1996.

[7] R. Bordawekar, A. Choudhary, K. Kennedy, C. Koelbel, M. Paleczny,
A model and compilation strategy for out-of-core data-parallel
programs, in: Proceedings of the Fifth ACM Symposium on Principles
and Practice of Parallel Programming, 1995, pp. 1–10.

[8] R. Bordawekar, A. Choudhary, J. Ramanujam, Automatic
optimization of communication in out-of-core stencil codes, in:
Proceedings of the 10th ACM International Conference on
Supercomputing, 1996, pp. 366–373.

[9] Y. Chen, Optimal anytime search for constrained nonlinear
programming, Master’s Thesis, Department of Computer Science,
University of Illinois at Urbana-Champaign, IL, May 2001.

[10] Y. Chen, M. Winslett, Y. Cho, S. Kuo, Automatic parallel I/O
performance optimization in Panda, in: Proceedings of the 10th
Annual ACM Symposium on Parallel Algorithms and Architectures,
1998, pp. 108–118.

[11] D. Cociorva, G. Baumgartner, C. Lam, P. Sadayappan, J. Ramanujam,
M. Nooijen, D. Bernholdt, R. Harrison, Space–time trade-off

672 S. Krishnan et al. / J. Parallel Distrib. Comput. 66 (2006) 659–673

optimization for a class of electronic structure calculations,
in: Proceedings of the ACM SIGPLAN 2002 Conference
on Programming Language Design and Implementation, 2002,
pp. 177–186.

[12] D. Cociorva, X. Gao, S. Krishnan, G. Baumgartner, C. Lam, P.
Sadayappan, J. Ramanujam, Global communication optimization
for tensor contraction expressions under memory constraints, in:
Proceedings of the 17th International Parallel and Distributed
Processing Symposium (IPDPS), 2003.

[13] D. Cociorva, J. Wilkins, G. Baumgartner, P. Sadayappan, J.
Ramanujam, M. Nooijen, D. Bernholdt, R. Harrison, Towards
automatic synthesis of high-performance codes for electronic
structure calculations: data locality optimization, in: Proceedings of
the International Conference on High Performance Computing, vol.
2228, Springer, Berlin, 2001, pp. 237–248.

[14] D. Cociorva, J. Wilkins, C. Lam, G. Baumgartner, P. Sadayappan, J.
Ramanujam, Loop optimization for a class of memory-constrained
computations, in: Proceedings of the 15th ACM International
Conference on Supercomputing (ICS’01), 2001, pp. 500–509.

[15] S. Coleman, K. McKinley, Tile size selection using cache
organization and data layout, in: Proceedings of the SIGPLAN ’95
Conference on Programming Languages Design and Implementation,
1995, pp. 279–290.

[16] T. Cormen, A. Colvin, ViC*: a preprocessor for virtual-memory
C*, Technical Report PCS-TR94-243, Dartmouth College, November
1994.

[17] T. Crawford, H. Schaefer III, An introduction to coupled cluster
theory for computational chemists, in: K. Lipkowitz, D. Boyd (Eds.),
Reviews in Computational Chemistry, vol. 14, Wiley, New York,
2000, pp. 33–136.

[18] J. Dongarra, J. Du Croz, I. Duff, S. Hammarling, A set of level-3
basic linear algebra subprograms, ACM Trans. Math. Software 16
(1) (1990) 1–17.

[19] R. Fourer, D. Gay, B. Kernighan, AMPL: A Modeling Language for
Mathematical Programming, 2002.

[20] S. Ghosh, M. Martonosi, S. Malik, Cache miss equations: a compiler
framework for analyzing and tuning memory behavior, ACM Trans.
Programming Language Systems 21 (4) (1999) 703–746.

[21] M. Kandemir, A. Choudhary, J. Ramanujam, An I/O conscious tiling
strategy for disk-resident data sets, J. Supercomput. 21 (3) (2002)
257–284.

[22] M. Kandemir, A. Choudhary, J. Ramanujam, R. Bordawekar,
Compilation techniques for out-of-core parallel computations,
Parallel Comput. 24 (3–4) (June 1998) 597–628.

[23] M. Kandemir, A. Choudhary, J. Ramanujam, M. Kandaswamy,
A unified framework for optimizing locality, parallelism, and
communication in out-of-core computations, IEEE Trans. Parallel
Distributed Systems 11 (7) (2000) 648–668.

[24] I. Kodukula, N. Ahmed, K. Pingali, Data-centric multi-level blocking,
in: Proceedings of the SIGPLAN Conference Programming Language
Design and Implementation, 1997, pp. 346–357.

[25] I. Kodukula, K. Pingali, Data-centric transformations for locality
enhancement, Internat. J. Parallel Programming 29 (3) (2001)
319–364.

[26] I. Kodukula, K. Pingali, R. Cox, D. Maydan, An experimental
evaluation of tiling and shackling for memory hierarchy management,
in: Proceedings of the ACM International Conference on
Supercomputing (ICS 99), 1999, pp. 482–491.

[27] S. Krishnamoorthy, G. Baumgartner, D. Cociorva, C. Lam, P.
Sadayappan, On efficient out-of-core matrix transposition, Technical
Report OSU-CIRSC-9/03-T52, The Ohio State University, Columbus,
OH, September 2003.

[28] S. Krishnan, Data locality optimization for synthesis of out-of-core
programs, Master’s Thesis, The Ohio State University, Columbus,
OH, September 2003.

[29] S. Krishnan, S. Krishnamoorthy, G. Baumgartner, D. Cociorva, C.
Lam, P. Sadayappan, J. Ramanujam, D. Bernholdt, V. Choppella, Data

locality optimization for synthesis of efficient out-of-core algorithms,
in: Proceedings of the International Conference on High Performance
Computing, 2003.

[30] C. Lam, Performance optimization of a class of loops implementing
multi-dimensional integrals, Ph.D. Thesis, The Ohio State University,
Columbus, OH, August 1999.

[31] C. Lam, D. Cociorva, G. Baumgartner, P. Sadayappan, Memory-
optimal evaluation of expression trees involving large objects, in:
Proceedings of the International Conference on High Performance
Computing, Springer, Berlin, 1999, pp. 103–110.

[32] C. Lam, D. Cociorva, G. Baumgartner, P. Sadayappan, Optimization
of memory-usage and communication requirements for a class of
loops implementing multi-dimensional integrals, in: Proceedings
of the 12th Workshop on Languages and Compilers for Parallel
Computing (LCPC), Springer, Berlin, 1999, pp. 350–364.

[33] C. Lam, P. Sadayappan, R. Wenger, On optimizing a class of multi-
dimensional loops with reductions for parallel execution, Parallel
Processing Lett. 7 (2) (1997) 157–168.

[34] C. Lam, P. Sadayappan, R. Wenger, Optimization of a class of
multi-dimensional integrals on parallel machines, in: Proceedings of
the Eighth SIAM Conference on Parallel Processing for Scientific
Computing, 1997.

[35] M. Lam, E. Rothberg, M. Wolf, The cache performance and
optimizations of blocked algorithms, in: Proceedings of the Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 1991, pp. 63–74.

[36] T. Lee, G. Scuseria, Achieving chemical accuracy with coupled
cluster theory, in: S. Langhoff (Ed.), Quantum Mechanical Electronic
Structure Calculations with Chemical Accuracy, 1997, pp. 47–109.

[37] W. Li, Compiling for NUMA parallel machines, Ph.D. Thesis, Cornell
University, August 1993.

[38] W. Li, Compiler cache optimizations for banded matrix problems,
in: Proceedings of the International Conference on Supercomputing,
1995, pp. 21–30.

[39] A. Lim, S. Liao, M. Lam, Blocking and array contraction across
arbitrarily nested loops using affine partitioning, in: Proceedings of
the Eighth ACM SIGPLAN Symposium on Principles and Practices
of Parallel Programming, ACM Press, New York, 2001, pp. 103–112.

[40] J. Martin, Benchmark studies on small molecules, in: P. Schleyer, P.
Schreiner, N. Allinger, T. Clark, J. Gasteiger, P. Kollman, H. Schaefer
III (Eds.), Encyclopedia of Computational Chemistry, vol. 1, Wiley,
New York, 1998, pp. 115–128.

[41] K. McKinley, S. Carr, C. Tseng, Improving data locality with loop
transformations, ACM TOPLAS 18 (4) (July 1996) 424–453.

[42] N. Mitchell, K. Hogstedt, L. Carter, J. Ferrante, Quantifying
the multi-level nature of tiling interactions, Internat. J. Parallel
Programming 26 (6) (June 1998) 641–670.

[43] T. Mowry, A. Demke, O. Krieger, Automatic compiler-inserted
I/O prefetching for out-of-core applications, in: Proceedings
of the Second Symposium on Operating Systems Design and
Implementations, 1996, pp. 3–17.

[44] J. Nieplocha, I. Foster, Disk resident arrays: an array-oriented I/O
library for out-of-core computations, in: Proceedings of the Sixth
Symposium on the Frontiers of Massively Parallel Computation,
1996, pp. 196–204.

[45] J. Nieplocha, R. Harrison, R. Littlefield, Global arrays: a nonuniform
memory access programming model for high-performance computers,
J. Supercomput. 10 (1996) 197–220.

[46] M. Paleczny, K. Kennedy, C. Koelbel, Compiler support for out-of-
core arrays on parallel machines, Technical Report 94509-S, Rice
University, Houston, TX, December 1994.

[47] G. Rivera, C. Tseng, Eliminating conflict misses for high performance
architectures, in: Proceedings of the International Conference on
Supercomputing, 1998, pp. 353–360.

[48] Y. Song, Z. Li, New tiling techniques to improve cache temporal
locality, in: Proceedings of the ACM SIGPLAN Conference

S. Krishnan et al. / J. Parallel Distrib. Comput. 66 (2006) 659–673 673

on Programming Language Design and Implementation, 1999,
pp. 215–228.

[49] R. Thakur, R. Bordawekar, A. Choudhary, R. Ponnusamy, T. Singh,
PASSION runtime library for parallel I/O, in: Proceedings of the
Scalable Parallel Libraries Conference, 1994, pp. 119–128.

[50] B. Wah, Y. Chen, Web Interface for Discrete Constrained Search
Solver. http://manip.crhc.uiuc.edu/csa

[51] B. Wah, Y. Chen, Constrained genetic algorithms and their
applications in nonlinear constrained optimization, in: Proceedings
of the 11th IEEE International Conference on Tools with Artificial
Intelligence, 2000, pp. 286–293.

[52] B. Wah, Y. Chen, Optimal anytime constrained simulated annealing
for constrained global optimization, in: Proceedings of the ACM
Symposium on Principles and Practice of Constraint Programming,
Springer, Berlin, 2000, pp. 425–439.

[53] B. Wah, Y. Chen, Hybrid constrained simulated annealing and genetic
algorithms for nonlinar constrained optimization, in: Proceedings of
the IEEE Congress on Evolutionary Computation, 2001, p. 2001.

[54] M. Wolf, M. Lam, A data locality algorithm, in: Proceedings of the
ACM SIGPLAN Conference Programming Language Design and
Implementation, 1991, pp. 30–44.

[55] M. Wolf, D. Maydan, D. Chen, Combining loop transformations
considering caches and scheduling, Internat. J. Parallel Programming
26 (4) (1998) 479–503.

Sandhya Krishnan received the B.E. degree
in Computer Engineering from the Bombay
University, India in March 2001, and gradu-
ated with a Masters in Computer and Infor-
mation Science from The Ohio State Uni-
versity, Columbus, Ohio in September 2003.
She continued to work as a Systems Devel-
oper on the same project till May 2004. Her
research interests include high-performance
computing and development of optimization
algorithms.

Sriram Krishnamoorthy was born in
Chennai, India in 1981. He received his
B.E. degree from the College of Engineer-
ing, Guindy, Anna University in 2002. He
has been pursuing the Ph.D. degree at the
Ohio State University, under the supervision
of Prof. P. Sadayappan, since Septem-
ber 2002. His research interests include
high-performance computing, out-of-core
algorithms and optimizations for scientific
computing.

Gerald Baumgartner received the Dipl.
Ing. degree from the University of Linz,
Austria, and M.S. and Ph.D. degrees from
Purdue University, all in Computer Science.
He began his academic career at The Ohio
State University in 1997. Since 2004, he
is at the Department of Computer Science
at Louisiana State University. His research
interest includes compiler optimizations,
the design and implementation of domain-
specific and object-oriented languages,
desktop grids, and development and test-
ing tools for object-oriented and embedded
systems programming.

Chi-Chung Lam graduated from The Ohio
State University with a Ph.D. degree in Com-
puter and Information Science in 1999. The
title of his dissertation was “Performance
optimization of a class of loops implement-
ing multi-dimensional integrals”.

J. Ramanujam received the B. Tech. degree
in Electrical Engineering from the Indian
Institute of Technology, Madras, India in
1983, and his M.S. and Ph.D. degrees in
Computer Science from The Ohio State Uni-
versity in 1987 and 1990 respectively. He is
currently the John E. & Beatrice L. Ritter
Distinguished Professor in the Department
of Electrical and Computer Engineering at
Louisiana State University. His research in-
terests are in compilers for high-performance
computer systems, embedded systems,
software optimizations for low-power

software optimizations for low-power computing, high-level hardware
synthesis, parallel architectures and algorithms. He has published over
120 papers in refereed journals and conferences in these areas in ad-
dition to several book chapters and a book. He received the National
Science Foundation’s Young Investigator Award in 1994. In addition, he
has received the best paper award at the 2003 International Conference
on High-Performance Computing (HiPC 2003) for his work with others
on compiler optimizations for quantum chemistry computations.

P. Sadayappan received the B. Tech. de-
gree from the Indian Institute of Technology,
Madras, India, and an M.S. and Ph.D. from
the State University of New York at Stony
Brook, all in Electrical Engineering. He is
currently a Professor in the Department of
Computer Science and Engineering at The
Ohio State University. His research interests
include Compile/Runtime Optimization and
Scheduling and Resource Management for
Parallel/Distributed Systems.

Venkatesh Choppella is on the faculty at
the Indian Institute of Information Technol-
ogy and Management—Kerala. He holds a
B. Tech. from the Indian Institute of Tech-
nology, Kanpur and a Ph.D. from the Indi-
ana University, both in Computer Science.
He has held research and engineering posi-
tions at Xerox Corporation, Hewlett-Packard
Company, Indiana University and Oak Ridge
National Laboratory. His interests are in
programming languages, compilers for do-
main specific languages, automated deduc-
tion, and software engineering.

http://manip.crhc.uiuc.edu/csa

