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Abstract
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uses context-free labeled shortest-path algorithms to generate optimal (shortest) proofs in time O(n3) for a
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non-optimal proofs. These non-optimal proofs may be further simplified by group rewrite rules.
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1. Introduction

The term unification problem in the empty theory, also called the syntactic unification prob-
lem, is concerned with solving equations over syntactic terms built from variables and function
symbols. Term unification has diverse applications including automated theorem proving, artifi-
cial intelligence, databases, type reconstruction in programming languages, and logic programming
(Prolog).
A solution for a system of term equations, also called a unifier, is a substitution (a mapping from

variables to terms) such that the substitution, when applied, makes each of the terms on the left-
and the right-hand side of equation equal. For example, consider the term equation

f(x, y) ?= f(a, z), (1)

in which x, y , and z are variables, and f is a function symbol and a is a constant. It can be verified
that the substitution

x �→ a, y �→ b, z �→ b,

where b is a constant, is a unifier of Eq. (1). The solution x �→ a, y �→ z is also a unifier.
It is also possible that a system of equations has no solutions. Consider, for example, the

equation

f(x, y) ?= g(x, y). (2)

No substitution can make the two terms involved in the equation equal. In such a case, we say
that the system of term equations fails to unify, or is non-unifiable.
This paper is motivated by the question of determining why a system of equations fails to unify.

The reason for non-unifiability of Eq. (2) is simple: the head symbols do not match. In general, how-
ever, determining the cause of failure could lead to long chains of reasoning involvingmany original
and derived term equations. The more general problem consists of source-tracking unification, that
is, deriving diagnostic information about unifiability or non-unifiability of a system of equations in
terms of the original representation of the unification problem. Non-unifiability is related to type
errors in programming languages [5,21,29,55] and unsuccessful queries in logic programs [10,17]. The
reporting of this failure can be confusing and inadequate for reconstructing the error.
The origins of the unification problem can be traced to the 1930s work of Herbrand [27]. In the

1960s,Robinson coined the term“unification”and showedhow it lay at theheart of resolution-based
theorem proving [48]. Robinson defined the notion of a most general unifier, a unifier from which
all other unifiers may be derived by applying a suitable substitution, and proposed an algorithm for
computing most general unifiers. The many variants and generalizations of the unification prob-
lem (E-unification, higher-order unification, semi-unification, etc.) and their diverse applications
have made unification an important area of research in theoretical computer science and artificial
intelligence. Surveys of unification with its applications in other areas can be found in [31] and [2].
Traditionally, there have been two main approaches to studying the unification problem and

designing algorithms for computing most general unifiers. The first is the transformational ap-
proach to unification introduced by Martelli and Montanari [37], studied by Lassez et al. [33], and
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surveyed by Jouannaud and Kirchner [30]. In this approach, a system of term equations is repeat-
edly transformed until it is in “solved form.” This approach has the advantage of abstracting the
representation of the unification algorithm and the control of algorithms computing unifiers. The
second approach relies on an efficient representation of the unification problem as a directed acyclic
graph with structure sharing. Unification is then viewed as a process of constructing a relation (the
unification closure) over the vertices of the unification graph. The representation of terms as graphs
with structure sharing was proposed by Boyer and Moore [8] and grew out of Robinson’s tabular
representation of terms [47]. The view of unification as closure computation was proposed by Pat-
erson and Wegman in their paper on linear unification [43]. The relational view has the advantage
that it pays close attention to the representation and implementation of the unification problem.
There are two other lesser cited approaches to unification in the literature. The first is the logical

view of unification, proposed by Le Chenadec [34] which builds deduction systems to express uni-
fication and congruence closures. The second approach, suggested by Cox [18], views unification in
terms of context-free language recognition by a pushdown automaton.
The framework presented in this paper is based on the relational approach and draws from the

approaches of Le Chenadec and Cox. Its development is, however, motivated by simplicity and the
desire to extract practical algorithms for source-tracking unification.
The framework consists of four components:

(1) A model theory expressing unification quotient graph connectivity in terms of unification
paths, which are paths over the unification graph whose labels are suffixes of semi-Dyck la-
beled-paths over the original graph. As a special case, the problem of determiningmembership
in the unification closure is reduced to computing paths whose labels form strings of balanced
parentheses.

(2)A type system logic PU for formalizing the reasoning involved in unification. The logic is sound
and complete with respect to unification paths.

(3) A unification algorithm implementing the deduction system PU . The algorithm is derived as a
simple and inexpensive extension to the standard unification algorithm that integrates proof
generation with unification.

(4)A scheme for normalizing witnesses computed by the unification source-tracking algorithm
using elementary group rewriting.

Since our framework for source-tracking unification is graph-theoretic and is based on analyz-
ing the structure of the unification graph representing the unification problem, it is closer to the
relational rather than the transformational view of unification. The framework examines the uni-
fication graph’s underlying labeled directed graph, obtained by orienting and labeling each edge
of the unification graph. The framework rests on a fundamental property relating paths in labeled
directed graphs to paths in their quotients under unification closure. The unification rule for equat-
ing subterms (downward closure) may be captured by a connectivity relation on the vertices of
the underlying labeled directed graph. By suitably labeling the edges of the unification graph, we
obtain a characterization of witnesses to quotient graph connectivity as paths whose labels form
the suffix language of a semi-Dyck set (the language of balanced parentheses). This characteriza-
tion allows the use of formal language path algorithms for witness computation [3,40]. Based on
this observation, we propose an O(n3) algorithm where n is the size of the graph representing the
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unification problem, for computing the optimal (smallest sized) unification paths sufficient to derive
non-unifiability.
The logic PU is a type system for well-typed unification path expressions whose type represents

connectivity relations in the quotient graph. PU encodes the deductions made by unification al-
gorithms based on structure sharing. On the basis of this characterization, we define an efficient
unification source-tracking algorithm that computes unification path expressions as it performs
unification with an overhead of only a constant time factor.
The paths computed by the source-tracking algorithm are normalized in linear time using ele-

mentary group rewrite rules.While the simplification rules are well-known (the free group reduction
rules of the equational rewrite systemof Peterson and Stickel [44]), their interactionwith the “typed”
unification path expressions is somewhat delicate, partly due to the interplay between one-sided and
two-sided cancellation laws in semi-Dyck sets. The usual subject reduction property fails to hold.
Instead, types lost after a one-step rewrite are recovered at normalization.We call this phenomenon
weak subject reduction.
The source-tracking algorithm suggested here has been implemented in Scheme [12]. The frame-

work presented here has been the basis of the type error reporting algorithm proposed in [13].
The rest of this article is divided into the following sections: Section 2 outlines themain ideas with

an example and informally shows how non-unifiability can be captured via specially labeled-paths
in the unification graph. Section 3 defines the machinery of unification in terms of labeled directed
graphs. Formal definitions for term graphs, unification graphs, labeled graphs, unification closure,
and quotient graphs are presented. The basic result of Paterson and Wegman [43] about unifica-
tion closure and unifiability is recalled. The notation used in the rest of the paper is summarized.
Section 4 identifies source tracking as the problem of tracking the source of paths in the quotient
graph in terms of paths in the original graph. It introduces the notion of unification paths and their
fundamental role in unification source-tracking. Section 5 introduces a deduction system PU for ex-
pressing proofs of membership in the unification closure of a graph. It also defines unification path
expressions as the well-typed terms of this deduction system. Section 6 shows how to inexpensively
integrate the construction of unification path expressions into the unification algorithm and how
to accommodate some standard optimizations of the unification algorithm with the construction
source-tracking information. Section 7 shows how to simplify the unification expressions using
elementary group rewriting. Section 8 discusses related work. The related work section is slanted
towards the application of unification in type inference. Section 9 concludes with suggestions for
future work.
An earlier version of this work was reported in [15].

2. Motivating example

The main ideas of this paper are informally introduced using the set of term equations shown
in Fig. 1. These equations are type equations whose derivation, with source-tracking as the central
concern, is reported elsewhere [13,14].
The equations f : t6 ?= t7→t4 and h : t6 ?= int→int, together imply

t7→t4
?= int→int.
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Fig. 1. Example of a non-unifiable set of term equations.

Equating subterms yields the derived equations

j : t7 ?= int,

k : t4 ?= int.

The equations j, i, e, and c form a chain of equality

int
?= t7

?= t1
?= t3

?= bool

implying int
?= bool, which is a symptom of non-unifiability of the original set of equations. Also,

k , d , g, e and c form the chain

int
?= t4

?= t5
?= t1

?= t3
?= bool

again yielding the symptom int
?= bool.

The system of term equations is represented by a unification graph, as shown in Fig. 2. Variables
and function symbol occurrences in the system of term equations are vertices in the unification
graph. Thick branch edges distinguished with solid arrowheads represent the relation between a
term and its immediate subterms. Thin equational edges distinguished with open arrowheads repre-
sent equations between terms. Each equational edge is oriented in an arbitrary direction. Solid edges
are original equations. Dashed edges are derived equations, that is, equations which are inferred by
the process of unification (j and k in the example).
Unification may be viewed as establishing special connectivity relations between vertices in the

unification graph. In the example, a proof for the derivation of the unsolvable equation

int
?= bool

from the original set of equations of Fig. 1 may be viewed as a path connecting the vertices int and
bool in the unification graph, with the assumption that edges may be traversed in either direction.
Traversal of an edge y in a direction opposite to its orientation is denoted y−1. Thus, the paths
j−1ie−1c and k−1dge−1c between int and bool in Fig. 2 are both witnesses to the insolubility of the
given system of term equations. The edges j and k owe their existence to the downward-closure rule
and the connectivity of the → nodes via edges f and h. Thus, j is derived from the path p−1f −1hr

consisting solely of original constraints. Similarly, k is derived from the path q−1f −1hs.
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Fig. 2. Unification graph representing term equations of Fig. 1.

Replacing j with p−1f −1hr in the path j−1ie−1c connecting int with bool yields the path
(p−1f −1hr)−1ie−1c. This path, containing only original edges, simplifies to r−1h−1fpie−1c. Simi-
larly, replacing k with q−1f −1hs in the path k−1dge−1c and simplifying yields s−1h−1fqdge−1c. These
two paths are different insolubility diagnoses for the original type constraints. Furthermore, these
paths are minimal: no other path consisting of a proper subset of the edges in these paths connects
int to bool.

2.1. Slices from paths

Programmers think in terms of program slices when debugging errors in their programs [56,57].
Program slices are subparts of the program that need to be fixed to remove the error. If we consider
sets of term equations as programs and symptoms of non-unifiability as errors, then it is reasonable
to ask how to compute program slices of a system of non-unifiable term equations that derive the
symptom of non-unifiability of the term equations.
Each of the paths r−1h−1fpie−1c and s−1h−1fqdge−1c defines a program slice of the set of equa-

tions of Fig. 1 that derive the symptom int
?= bool. The set of edges {r, h} corresponds to the

weakening t6
?= int → � of the constraint h : t6 ?= int → int. The � represents a “hole” indi-

cating that the second occurrence of int is irrelevant. Each occurrence of a hole is interpreted
as a variable not occurring elsewhere in the set of equations. Similarly, {f , p} corresponds to the
weakening t6

?= t7 → � obtained by replacing t4 with � in f . The path r−1h−1fpie−1c consisting of
segments r−1h−1 and fp , along with edges i, e, and c, therefore corresponds to the following set of
minimally non-unifiable type equations:

t6
?= int → � t6

?= t7 → � t7
?= t1

t3
?= t1 t3

?= bool.
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Similarly, the set ofminimally non-unifiable type equations derived from the path s−1h−1fqdge−1c

are

t6
?= � → int t6

?= � → t4 t4
?= t5

t5
?= t1 t3

?= t1 t3
?= bool.

Thus, a symptom of unification failure may have its origin in multiple program slices. Each
program slice is derived from a specially labeled-path in the unification graph. Each such specially
labeled-path, therefore, encodes a program slice. The definition, derivation, and simplification of
these paths is the focus of this paper.

3. Basic definitions and notation

We begin the main part of this paper by formalizing the basic machinery of unification in terms
of labeled directed graphs and noting some elementary properties of labeled-paths. Formal defini-
tions for term graphs, unification graphs, labeled graphs, unification closure and quotient graphs
are then presented using labeled directed graphs. The fundamental result of Paterson andWegman
[43] relating unification closure and unifiability is recalled. Finally, the notation used in the rest of
the paper is summarized for easy reference.

3.1. Labeled directed graphs

A labeled directed graph G is a triple 〈�, V ,D〉, where � is an alphabet, V is a set of vertices,
and D ⊆ V × V × (� ∪ {�}) is the set of labeled directed edges of G. The triple 〈u, v, !〉 ∈ D, written
u

!−→ v, denotes an edge from u to v whose label is !. The function l projects the label ! from an
edge u

!−→ v. Edges with labels in� are branch edges and those with label � are equational edges. We
use the convention that # ranges over symbols in �, whereas ! ranges over � ∪ {�}. An equational
edge from a vertex to itself is called a trivial edge.
We overload the labeling function l : D → � ∪ {�} to denote its homomorphic extension l :

D∗ → �∗. The following observations relating sequence of edges with the decomposition of their
labels are natural consequences of this extension. These observations will be used later to prove the
completeness of the logic of unification deductions (Lemma 15).

Lemma 1 (Decomposition). Let G = 〈�, V ,D〉 be a labeled directed graph and let s, s1, s2 ∈ D∗ be
sequences of edges, b a branch edge in D, and # a symbol in �.

(1) s = s1s2 if and only if l(s) = l(s1)l(s2).

(2) s contains a branch edge b ∈ D such that l(b) = # if and only if l(s) contains the symbol # as a
substring.

Proof. Follows from the definition of the homomorphic extension of the label function l. �
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Fig. 3. The rules defining labeled-paths over a labeled directed graph G = 〈�, V ,D〉.

3.2. Labeled-paths

Our analysis of unification source-tracking is formulated in terms of paths over labeled
directed graphs and their labels. Let G = 〈�, V ,D〉 be a labeled directed graph. The set of la-

beled-paths in G are inductively defined using the rules of Fig. 3. The judgement G |= p : u l−→ v

denotes that p is a labeled-path in G from u to v with label l. The judgement G |= u
l−→ v de-

notes that there is a path from u to v labeled l in G. The label of an empty path is �. Because
an edge in a labeled directed graph may be labeled with �, non-empty paths may have empty la-
bels.
The following properties relate the decomposition of paths with the decomposition of their la-

bels. They are straightforward to verify, and are recorded here for later use in proving soundness
properties of unification paths, defined and discussed in Section 4.2.

Lemma 2 (Labeled-path decomposition). Let G = 〈�, V ,D〉 be a labeled directed graph.

(1) G |= qr : u l−→ v if and only if for some vertex v′ ∈ V and label strings lq, lr ∈ �∗, G |= q :
u

lq−→ v′, G |= r : v′ lr−→ v, and l = lqlr.

(2) G |= p : u lqlr−→ v if and only if for some vertex v′ ∈ V and some labeled-paths q and r in G,

G |= q : u lq−→ v′, G |= r : v′ lr−→ v, and p = qr.

(3) G |= p : u lq#lr−→ v, where # ∈ � and lq, lr ∈ �∗ if and only if there are vertices u′ and v′ in V , a
branch edge b ∈ D from u′ to v′ labeled #, and paths q and r in G such that p = qbr, G |= q :
u

lq−→ u′, and G |= r : v′ lr−→ v.

Proof.

(1) Follows immediately from the definition of labeled-paths.
(2) The if part follows from the TRANS rule of labeled-paths. For the only if part, by Lemma 1,

p = qr for some edge sequences q and r such that l(q) = lq and l(r) = lr . Since p is a path, it

follows that q and r are paths. In other words, there is a vertex v′ such that G |= q : u lq−→ v′,
G |= r : v′ lr−→ v, which finishes the proof.
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(3) The if part follows from one application of the INIT rule and two applications of the
TRANS rule of Fig. 3. For the only if part, by Lemma 1, there are vertices u′ and v′ and
a branch edge b from u′ to v′ labeled # such that b is a substring of p . Therefore, p = qbr

for some edge sequences q and r such that l(q) = lq and l(r) = lr . Since p is a path, it

follows that q and r are paths. Therefore, G |= q : u lq−→ u′ and G |= r : v′ lr−→ v, which
completes the proof. �

3.3. Unification graphs

Given an alphabet � and � �∈ �, let �0, �+, and �∗ denote, respectively, the set {�} containing
the empty word �, the set of finite non-empty words over �, and the set of finite words over �. A
signature is an alphabet � of function symbols, graded by an arity function % : � → N , where N
denotes the set of natural numbers. Function symbols of arity 0 are called constants.
A family of terms over a signature � and a set of variables V (�-terms over V ) is represented

using a�-term graph T = 〈W ,X , )〉, where W is a set of function vertices disjoint from V, X ⊂ V is
a set of strict vertices, and ) : W −→ �(W ∪ X) is the subterm function, where for any set A,�(A) is
the set of terms f(a1, . . . , a%(f)) such that f ∈ �, and, for each i such that 1 � i � %(f), ai ∈ A. Strict
vertices represent variables in a family of terms, whereas function vertices represent non-variable
subterms. If w is a function vertex and )(w) = f(u1, . . . , un), then the label of w, denoted L(w), is
defined to be f .
Pictorially, the graph representation of the �-term graph T = 〈W ,X , )〉 consists of a set of ver-

tices and edges. The set of vertices is W ∪ X . For each w ∈ W , if )(w) = f(u1, . . . , un), where f ∈ �

and n = %(f), there is a branch edge from w to ui, for each i, 1 � i � n.
Thus, the term graph is a formalization of the graph representation of terms. This formalization

is closer to the actual implementation of efficient data structures for terms because it makes ex-
plicit the sharing assumptions of vertices: variables of a term are always shared, and non-variable
subterms may be shared.
A term equation is a symmetric relation on terms. Sets of term equations are represented using

unification graphs. A�-unification graphG is a pair 〈T ,E〉, where T is a�-term graph 〈W ,X , )〉 rep-
resenting the family of terms occurring in the set of term equation, and E is a relation over W ∪ X .
Pictorially, G extends the graph T with a set of equational edges such that for each (u, v) ∈ E,
there is an undirected edge in G. When � is clear from the context, ‘�-term,’ ‘�-term graph,’
and ‘�-unification graph’ are abbreviated ‘term,’ ‘term graph,’ and ‘unification graph,’
respectively.
If � is a signature, then {fi | f ∈ �, 1 � i � %(f)}, denoted �N, is called the projection alphabet

of �. To avoid multiple levels of subscripting, the symbol fi is sometime written f.i.
The labeled directed graph underlying a �-unification graph G = 〈〈W ,X , )〉,E〉 is 〈�N , V ,D〉,

whereV =W ∪ X , andD is theunionof the set ofbranchedges {w f.i−→ ui | )(w)=f(u1, . . . , ui, . . . un)}
and equational edges {u �−→ v | (u, v) ∈ E}. When there is no ambiguity, the labeled directed graph
underlying a �-unification graph G is also denoted G. Note, however, that while the function ver-
tices of a unification graph are labeled, in the underlying labeled directed graph, it is edges, and not
vertices, that are labeled.
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Example 3. The set of term equations of Fig. 1 is represented by the�-unification graphG = 〈T ,E〉,
where � consists of the binary (infix) function symbol → and the constants bool and int, and
T = 〈W ,X , )〉 is the term graph representing the family of terms, W = {w1,w2,w3,w4,w5}, X =
{t0, . . . , t7}, and ) is defined as

)(w1) = t1 → t2
)(w2) = t7 → t2
)(w3) = w4 → w4
)(w4) = int
)(w5) = bool

,

where E, the set of equational edges, is

a : t0 ?= w1 b : t2 ?= t4 c : t3 ?= w5

d : t4 ?= t5 e : t3 ?= t1 f : t6 ?= w2

g : t5 ?= t1 h : t6 ?= w3 i : t7 ?= t1.

The labeled directed graph underlying G is 〈�N, V ,D〉, where �N is the projection alphabet
{→1,→2}, V is the set of vertices given above, and D is the following set of labeled directed edges:

a : t0 �−→ w1 b : t2 �−→ t4 c : t3 �−→ w5

d : t4 �−→ t5 e : t3 �−→ t1 f : t6 �−→ w2

g : t5 �−→ t1 h : t6 �−→ w3 i : t7 �−→ t1

m : w1
→1−→ t1 n : w1

→2−→ t2 p : w2
→1−→ t7

q : w2
→2−→ t4 r : w3

→1−→ w4 s : w3
→2−→ w4.

Fig. 2 is a “hybrid” picture that represents both a unification graph and the underlying labeled
directed graph. In Fig. 2, the unification graph’s strict vertices and function vertices are represented
by boxes and circles, respectively. The dashed edges are not really part of the unification graph;
they are present only to indicate the derived connectivity between subterm vertices. Branch edges
are represented by thick edges with closed, solid arrowheads. The thin edges represent equational
edges whose directions should be ignored.
To interpret Fig. 2 as the labeled directed graph underlying the unification graph, we consider

the orientation of all the edges (including the equational edges). To avoid clutter, the labels on the
edges are not shown, but are assumed � for the equational edges and →1 (respectively, →2) for
each branch edge emanating from the left (respectively, right) of a vertex. The labels on the vertices,
although shown (because they are part of the definition of a unification graph), are irrelevant to the
labeled directed graph.

Given a labeled directed graph G = 〈�, V ,D〉, a relation R on V is downward-closed if for each

# ∈ � and uRu′, u #−→ v ∈ D and u′ #−→ v′ ∈ D implies vRv′. If C is an equivalence relation on
the vertices of G, then the unification closure of C is the least downward-closed equivalence on
the vertices of G containing R. The unification closure of G, denoted ∼, is the unification closure of
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Fig. 4. Quotient graph of the labeled directed graph underlying the unification graph of Fig. 2.

the equational edges of G. G |= u ∼ v denotes that (u, v) is an element of ∼, the unification closure
of G. The unification quotient of G is the labeled directed graph G/∼= 〈�, V/∼,D/∼〉, where V/∼
is the set of equivalence classes of ∼, and for all vertices u, v ∈ V and # ∈ �, [u]∼ #−→ [v]∼ ∈ D/∼
if u

#−→ v ∈ D. For a unification graph G = 〈W ,X , ),E〉, the unification closure of its underlying
labeled directed graph is homogeneous if for each w,w′ ∈ W , w ∼ w′ implies L(w) = L(w′).

Example 4. Fig. 4 shows the quotient graph of the labeled directed graph underlying the unification
graph of Fig. 2. Each vertex is an equivalence class of the unification closure of the unification
graph of Fig. 2. Although labels on vertices are not part of the labeled directed graph, each vertex
is annotated with the set of all the labels of all its constituent vertices from the original unification
graph. Because the unification closure contains the pair of function vertices w4 labeled bool and
w5 labeled int, the unification graph of Fig. 2 is not homogeneous.

The following fundamental result of Paterson and Wegman [43] relates the unifiability of a sys-
tem of term equations with the unification closure of the labeled directed graph underlying the
unification graph representing the system of term equations.

Theorem 5 (Paterson and Wegman 1978 [43]). The set of term equations represented by a unification
graph G is unifiable if and only if the unification closure of its underlying labeled directed graph is
homogeneous and the quotient graph G/∼ is cycle-free.

Example 6. The unification closure computed in Example 4 is non-homogeneous. Applying Pat-
erson and Wegman’s result, we conclude that the equations represented unification graph G of
Fig. 2 are non-unifiable.

A homogeneous and cycle-free quotient can be used to read off the most general unifier of a
system of term equations. However, we will not be concerned with most general unifiers in this
paper. Instead, using the basic formalism of this section as the starting point, we develop a more
precise and general analysis relating the labeled directed graph and its quotient independent of the
unifiability or non-unifiability of the unification graph.
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Before we turn to this task, however, we summarize the notation used throughout the rest of the
paper.

Notation
Some of the symbols are overloaded with meanings defined later in the paper. For overloaded

symbols, usually the meaning will be clear (or will be made clear) from the context.

• � is used to denote an alphabet and also a signature.
• f , g, h denote function symbols. x, y , z, t denote variables. Terms are denoted by 2 and also
sometimes by t.

• T is used to denote a term graph.G denotes a unification graph and also a directed labeled graph.
• E denotes sets of term equations, and also the set of equational edges in a unification graph.
• l denotes the labeling function on edges and also its homomorphic extension on sequence of
edges. l is also used to indicate a sequence of labels.

• u, v, r denote vertices of a term graph. x, y denote strict vertices and w denotes a function vertex.
u, v denote vertices that may either be strict or function vertices.

• a denotes an equational edge. b denotes a branch edge. c denotes a directed (equational or branch)
edge.

• ! denotes the label of a directed edge (branch or equational). # denotes the label of a branch edge.
• s denotes a sequence of edges of a graph.
• p , q, r denote labeled-paths in a graph. They are also used to denote unification expressions,
introduced in Section 5.

In addition, subscripted and primed variants of the above meta-variables are also used.

4. Source-tracking

We are now ready to state the first result of this paper, which characterizes connectivity in the
quotient graph G/∼ in terms of a special connectivity relation over G. This is the basis for unifica-
tion source-tracking because we can track paths in the quotient graph in terms of their “source”
paths in the original graph. A precise characterization of source-tracking is based on an analysis of
the formal language properties of the labels of paths on unification graphs and their quotients to
which we turn next.

4.1. Semi-Dyck and Dyck sets

Semi-Dyck and Dyck sets are parentheses languages. These languages have nice cancellation
properties. As will be shown in the next section, this cancellation phenomenon is at the heart of
unification closure.
Given an alphabet � = {#1, . . . , #n}, �−1 is the alphabet {b−1

i | #i ∈ �}, assumed disjoint from �.
S (�) and S2(�) denote the sets {#−1# ≈ � | # ∈ �} and {##−1 ≈ �, #−1# ≈ � | # ∈ �} of one-way and
two-way cancellation identities, respectively. Let≈S(�)

and≈S2(�)
denote the smallest congruences

over (� ∪ �−1)∗ containing the identities S(�) and S2(�), respectively. Intuitively, u ≈S(�)
v if u
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may be obtained from v via applications of the identities in S(�) (or vice versa), and likewise for
u ≈S2(�)

v. The equational systems S(�) and S2(�)may be turned into rewrite systems by orienting

each of the identities #−1# ≈ � and ##−1 ≈ � as #−1# −→ � and ##−1 −→ � from left to right, result-
ing in strongly normalizing rewrite systems. One step rewriting under S(�) and S2(�) is denoted
−→S(�)

and −→S2(�)
, respectively. If l ∈ (� ∪ �−1)∗, let 3S(�)

(l) and 3S2(�)
(l) denote the unique

normal forms under S(�) and S2(�) rewriting, respectively. If L ⊆ (� ∪ �−1)∗, let

S(�,L) def= {l ∈ (� ∪ �−1)∗ | 3S(�)
(l) ∈ L},

S2(�,L)
def= {l ∈ (� ∪ �−1)∗ | 3S2(�)

(l) ∈ L}.

Intuitively, S(�,L) (respectively, S2(�,L)) denotes the parentheses language of words which, after
one-way (respectively, two-way) cancellation, reduce to words in L. Obviously, S(�,L) is a subset
of S2(�,L). We are primarily interested in the languages S(�,L) and S2(�,L)when L is�0,�+, and
�∗. These are abbreviated S0(�), S+(�), and S∗(�), and S02 (�), S+

2 (�), and S∗
2 (�), respectively.

S0(�) is known as the semi-Dyck set over�. It is the set of balanced parentheses words whose open
and closed parenthesis symbols are drawn from �−1 and �, respectively.1

Clearly, S0(�) and S+(�) are disjoint and S∗ = S0 ∪ S+. The language S∗ is the set of all suffixes
of S0 words, and is suffix-closed. (See [25], p. 314, for the symmetric case of prefixes of S0 words.)
Informally, S+ is the set of “unbalanced” suffixes of words of balanced parentheses. The languages
S0, S+, and S∗ may be generated using the following context-free grammar:

S0 ::= � | S0#−1S0#S0 # ∈ �

S+ ::= S∗#S∗ # ∈ �

S∗ ::= S0 | S+

One-sided reductionwill assume special significance in our analysis. If l ∈ (� ∪ �−1)∗, the normal
form of l under one sided cancellation, that is 3S(�)

(l) is called the signature of l.2

The next lemma—a direct consequence of the context-free grammar specification of semi-Dyck
sets—formalizes the intuition that for every S∗(�) word l, every open parenthesis occurring in l is
matched, and every closed parenthesis is either matched, or unmatched. In the latter case, l is in
S+(�).

Lemma 7 (Matching). Let � be an alphabet and let l ∈ S∗(�).

(1) If l = l1#
−1l2 for some # in � and l1, l2 in (� ∪ �−1)∗, then l2 = l3#l4 for some l3 in S0(�) and

l4 in (� ∪ �−1)∗.
(2) If l = l1#l2, for some # in � and l1, l2 in (� ∪ �−1)∗, then

(a) l1 = l3#
−1l4 for some l3 in (� ∪ �−1)∗ and l4 in S0(�), or

(b) l1, l2 are both in S∗(�), implying l is in S+(�).

1 The reader will have to wait till Section 4.2 to appreciate the usefulness of this convention, which is counter to the
intuition of drawing left parentheses from � and the right from �−1.
2 This is not to be confused with the signature consisting of an alphabet and an arity function.
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Proof. By induction on the derivation of S∗ words. �

Example 8. Consider the signature � = {f �→ 2,g �→ 2,h �→ 1,a �→ 0}. The projection alphabet
�N consists of the closed parenthesis symbols

{f1, f2,g1,g2,h1}.
The corresponding open parenthesis symbols are

{f−1
1 , f−1

2 ,g−1
1 ,g−1

2 ,h−1
1 }.

The following are examples of words in various subsets of (�N ∪ �−1
N

)∗.

� S0

f1 S+
f−1
1 (�N ∪ �−1

N
)∗ − S∗

2

f1f−1
1 S02 − S0

f−1
1 f1 S0

f−1
1 g−1

2 f1 (�N ∪ �−1
N

)∗ − S∗
2 .

Dyck sets are closely related to groups. The quotient monoid (� ∪ �−1)∗/ ≈S2(�)
has S20(�) as

its identity element. If l ∈ (� ∪ �−1)∗, let [l] denote the equivalence class of the quotient contain-
ing the word l. By defining a unary inverse operation [l]−1 = [l′], where ll′ ≈S2(�)

�, the quotient

monoid can be turned into a group. This group is isomorphic to the free group generated by �.
The isomorphism is witnessed by the function f mapping each class [l] of ≈S2(�)

containing l to

the class of the free group containing l with the property that [l] ⊆ f([l]). For each word l over
� ∪ �−1, the inverse of l inv(l) maps l to an element of [l]−1 and is defined recursively as follows:
inv(�) = �, inv(#) = #−1 if # ∈ �, inv(#−1) = #, if #−1 ∈ �, and inv(ll′) = inv(l′)inv(l).
The central role of semi-Dyck and Dyck sets in the source-tracking of unification is brought to

fore in the next subsection using the idea of unification paths, which is introduced next.

4.2. Unification paths

To understand unification in terms of path connectivity, it is necessary to consider the traversal of
edges in the unification graph in both forward and reverse directions. This is formalized by defining
the inverse of a labeled directed graph. The inverse G−1 of a labeled directed graph G = 〈�, V ,D〉
is the labeled directed graph 〈�−1, V ,D−1〉, where D−1 = {v #−1−→ u | u #−→ v ∈ D}, and �−1 = �. D−1

is the set of inverse edges. It is natural to consider extending the operation of inverting edges to edge
sequences using the inv operation defined as before but operating on (D ∪ D−1)∗. The labels of a
path and its inverse are related in the following way, which is again straightforward to show:

Lemma 9 (Inverses of labeled-paths). Let G = 〈�, V ,D〉 be a labeled directed graph.

(1) (S0(�) labels) If l ∈ S0(�), then inv(l) = l.
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(2) (Inverse)G ∪ G−1 |= p : u l−→ v if and only ifG ∪ G−1 |= inv(p) : v l′−→ u,where l′ = inv(l).

Proof. Straightforward consequence of the definitions of inv and labeled-paths. �
We now define a special class of a labeled-paths called unification paths. These are paths whose

labels are elements of semi-Dyck sets.

Definition 10 (Unification paths). Let G = 〈�, V ,D〉 be a labeled directed graph and let u, v ∈ V . A
unification path from u to v over G is a path p in G ∪ G−1 such that 3S(�)

(l(p)) ∈ �∗.

IfG = 〈�, V ,D〉 is a labeled directed graph and p is a labeled-path inG ∪ G−1, then the signature
of p is defined to be the signature 3S(�)

(l(p)) of the label of p .
The structure of unification paths follows the nesting of parentheses. The label of a unification

path over a graphG = 〈�, V ,D〉 is an element of the suffix language S∗(�). Intuitively, a unification
path is obtained by traversing any of the edges of a labeled directed graph, or by concatenating two
unification paths, or by an upstream traversal on a branch edge labeled # followed by a unification
path whose label is balanced, followed by a downstream traversal on an identically labeled branch
edge. The signature of the upward traversal of the branch edge is #−1, which is akin to an open-
ing left parenthesis, whereas the corresponding traversal downward earns the signature # which
corresponds to a closing right parenthesis.
Fig. 5 shows instances and non-instances of unification paths over the unification graph of

Fig. 2. The labels of labeled directed graph underlying the graph of Fig. 2 are drawn from the pro-
jection alphabet {→1,→2}. Note that the signature of unification paths over this labeled directed
graph is always a word over the projection alphabet.

Fig. 5. Instances and non-instances of unification paths over the graph of Fig. 2.
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The name “unification paths” is justified because connectivity in the unification quotient graph
is witnessed by connectivity via unification paths. The rest of this section makes this notion precise.
The soundness property (Theorem 11) ensures that unification paths capture connectivity in the

quotient graph. The completeness property (Theorem 14) verifies that connectivity in the quotient
graph is witnessed by an appropriate unification path in the source graph.

Theorem 11 (Soundness of unification paths). Let G be a labeled directed graph 〈�, V ,D〉 whose
unification closure is ∼. If G ∪ G−1 |= u

l−→ v and l ∈ S∗(�), then G/∼ |= [u]
3S (�)

(l)

−→ [v].
Proof. Let G ∪ G−1 |= p : u l−→ v. The proof is by induction on the derivation of l in the grammar

S∗(�). For each case, we construct a path p ′ such that G/∼ |= p ′ : [u]
3S(�)

(l)

−→ [v].

(1) l = �: Every edge of p is labeled �. Therefore,G |= u ∼ v, andG/∼|= � : [u] �−→ [v]. The result
follows.

(2) l = l1#
−1l2#l3, where # ∈ �, and l1, l2, l3 ∈ S0(�). By Lemma 2, there are vertices u1, u2, u3, u4,

branch edges b1, b2, and paths p1, p2, and p3, such that p = p1b
−1
1 p2b2p3, and

G ∪ G−1 |= p1 : u l1−→ u1

b1 : u2 #−→ u1 ∈ D

G ∪ G−1 |= p3 : u2 l2−→ u3

b2 : u3 #−→ u4 ∈ D

G ∪ G−1 |= p3 : u4 l3−→ v

The normal forms of l1, l2, and l3 under S(�) are all equal to �. Applying the induction hy-
pothesis,G/∼|= [u] �−→ [u1]. Thus, [u] = [u1]. Similarly, [u2] = [u3], and [u4] = [v]. Due to the
downward closure of ∼, [u1] = [u4], implying [u] = [v]. It follows that G/∼|= [u] �−→ [v].

(3) l = lq#lr , where # ∈ �, and lq, lr ∈ S∗(�). By Lemma 2, part (2), there are vertices u′ and v′ in
G, a branch edge b from u′ to v′ inG ∪ G−1 and paths q and r inG ∪ G−1 such thatG ∪ G−1 |=
q : u lq−→ v′, G ∪ G−1 |= r : v′ lr−→ v. By the induction hypothesis, G/∼|= [u]

3S(�)
(lq)−→ [v′] and

G/∼|= [v′]
3S(�)

(lr)−→ [v]. Furthermore, G/∼|= [u′] #−→ [v′], because of the branch edge b from

u′ to v′. By transitivity of labeled-paths, it follows that G/∼|= [u]
3S(�)

(lq)#3S(�)
(lr)−→ [v]. Since

3S(�)
(lq)#3S(�)

(lr) has no S(�) redexes, it is equal to 3S(�)
(lq#lr). The result follows. �

By specializing Theorem 11 we conclude that S0-labeled connectivity is included in the unification
closure:

Corollary 12 (Soundness of S0 unification paths). Let G be a labeled directed graph 〈�, V ,D〉 whose
unification closure is ∼ . If G ∪ G−1 |= u

l−→ v and l ∈ S0(�), then G |= u ∼ v.

Proof. If l ∈ S0(�), then 3S(�)
(l) = �. Also, G/∼ |= [u] �−→ [v] implies G |= u ∼ v. �
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The next lemma shows that membership in the unification closure ∼ of a labeled directed
graph G is witnessed by a unification path labeled by a semi-Dyck word over the edge labels
of G.

Lemma 13 (Completeness of S0-labeled unification paths). Let G = 〈�, V ,D〉 be a labeled direct-
ed graph with unification closure ∼ . If G |= u ∼ v, then for some path p in G ∪ G−1 with label l,

G ∪ G−1 |= p : u l−→ v and l ∈ S0(�).

Proof. By induction on ∼. There are five cases. In each case, we show that l ∈ S0(�).

(1) REF∼: u = v, therefore G ∪ G−1 |= � : u �−→ u and � ∈ S0(�).
(2) INIT∼: Let u

�−→ v ∈ D, then G ∪ G−1 |= u
�−→ v : u �−→ v.

(3) SYM∼: Let G |= v ∼ u. By the induction hypothesis, G ∪ G−1 |= q : v l′−→ u for some path
q labeled l′ such that l′ ∈ S0(�). By Lemma 9 (1), inv(l′) = l′. By Lemma 9 (2), G ∪ G−1 |=
inv(q) : u l′−→ v.

(4) TRANS∼: Let u ∼ v′, v′ ∼ v, for some v′ ∈ V . By the induction hypothesis, G ∪ G−1

|= q : u l′−→ v′ and G ∪ G−1 |= r : v′ l′′−→ v for some paths q, r in G such that l′, l′′ ∈ S0(�).

Then, by theTRANSrule for path construction,G ∪ G−1 |= qr : u l′l′′−→ v. Clearly, l′l′′ ∈ S0(�).

(5)DN∼: u ∼ v because there are vertices u′, v′ in V , and edges u′ #−→ u (abbreviated b) and

v′ #−→ v (abbreviated b′) in D such that G |= u′ ∼ v′. By the induction hypothesis, G ∪ G−1

|= q : u′ l′−→ v′ for somepathqwith label l′ such that l′ ∈ S0(�). Therefore,G ∪ G−1 |= b−1qb′ :
u

#−1l′#−→ v. It is easy to see that #−1l′# ∈ S0(�). �

Corollary 12 and Lemma 13 together provide an alternative characterization of membership in
the unification closure of a labeled directed graph in terms of connectivity via labeled-paths. Objects
witnessing membership in the unification closure are paths labeled with semi-Dyck sets. Obviously,
this opens up the possibility of applying graph algorithms for labeled-path connectivity problems
to problems related to membership in unification closure. For example, finding all witnesses, or
finding the smallest-sized witness (see Section 4.3) can now be reduced to a semi-Dyck language
path reachability problem.
Lemma 13 is used to prove the completeness of unification paths over a graph with respect to

connectivity in the unification quotient of that graph.

Theorem 14 (Unification path completeness). LetG = 〈�, V ,D〉 be a labeled directed graph with uni-
fication closure∼ . IfG/∼ |= [u] l′−→ [v], where l′ ∈ �∗, thenG ∪ G−1 |= u

l−→ v for some l ∈ S∗(�)

such that 3S(�)
(l) = l′.

Proof. Let G/∼ |= p : [u] l′−→ [v]. The proof is by induction on the construction of p .

(1) REF: If p is �, the empty path, then l′ = �, [u] = [v], and G |= u ∼ v. From Lemma 13, G ∪
G−1 |= q : u l−→ v for some l ∈ S0(�). The normal form of l is �, which is equal to l′.
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(2) INIT: Let [u] #−→ [v] be an edge inG/∼. Then l′ = # and # ∈ �. By the definition of a quotient
graph,
(a) there is an edge b : u′ #−→ v′ ∈ D for some u′ ∈ [u] and v′ ∈ [v],
(b) G |= u ∼ u′, and
(c) G |= v′ ∼ v

By Lemma 13, G ∪ G−1 |= q : u l1−→ u′, where l1 ∈ S0(�), and G ∪ G−1 |= r : v′ l2−→ v, where

l2 ∈ S0(�). Using the TRANS rule for path construction, G ∪ G−1 |= qbr : u l1#l2−→ v. Clearly,
3S(�)

(l1#l2) = #, which is equal to l′.

(3) TRANS: Let G/∼|= [u] l′1−→ [v′], and G/∼|= [v′] l′2−→ [v]. By the induction hypothesis, G ∪
G−1 |= q : u l1−→ v′, where3S(�)

(l1) = l′1. Similarly,G ∪ G−1 |= r : v′ l2−→ v, where3S(�)
(l2) =

l′2. Then, by the TRANS rule for path construction over G ∪ G−1, G ∪ G−1 |= qr : u l1l2−→ v. l′1,
l′2, and l′1l

′
2 are already in normal formwith respect to S(�) reductions. Furthermore, l′ = l′1l

′
2.

This implies that 3S(�)
(l1l2) simplifies to l′, which completes the proof. �

Theorems 11 and 14 together show how unification source-tracking information may be encoded
as unification paths.

4.3. Computation of shortest unification paths

One measure of the succinctness of source-tracking information is its length. Since unification
paths are paths over a graph whose labels are constrained by the context-free grammar S∗(�) for
an alphabet �, computation of the shortest unification path is a special case of the context-free
labeled-path problem. If G is a directed graph whose edges are labeled from an alphabet �, and
L is a context-free language over�, the context-free labeled shortest-path problem consists of find-
ing the shortest-path from the set of all paths p in G between a given source and destination vertex
such that the label of p is a word in L .
Shortest unification paths may therefore be computed using the dynamic-programming-based

context-free labeled shortest-path algorithms proposed by Barrett et al. [3].3 (See also [40].) If L is
specified by a context-free grammar in Chomsky Normal Form, then the algorithm of Barrett et al.
has time complexity O(|V |5|N |2|R|), where V is the set of vertices in G, N the set of non-terminals,
and R the set of productions of the grammar. The efficiency may be improved to O(|V |3|N ||R|)
using Fibonacci heaps.
For unification paths over a directed labeled graph G = 〈�, V ,D〉, the grammar S∗(�) is of size

O(�) and may be transformed into a grammar in Chomsky Normal Form whose set of non-ter-
minals and productions are each of size O(�). Thus, shortest unification paths can be computed
in O(|V |3|�|2) time. Assuming a fixed alphabet, this means that shortest unification paths can be
computed in O(|V |3) time, where V is the vertex set of the unification graph.
This worst-case complexity can make a direct implementation of computing the optimal uni-

fication path expensive in practice. In the next few sections of the paper, we present a simple

3 The algorithm is unaffected if labels on edges are drawn from � ∪ {�}, where � is the empty word [36].
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extension to the unification algorithm that efficiently computes a non-optimal path which, in
practice, may be adequate for the purpose of reasoning about membership in the unification
closure.

5. The logic of unification path expressions

The goal of a logic is to formalize the principles of reasoning about objects of a model. The rules
of the logic are used to explain and derive the consequences of the basic assumptions in the model.
In the case of unification, we want to be able to formally reason about unifiability and non-unifi-
ability of a system of equations. Since these properties of a system of equations are subsumed by
the connectivity relation in the unification quotient of the unification graph representing the system
of equations, it is natural to consider a logic of vertices and paths on the labeled directed graph
unification graph.
We construct a simple deduction system PU to compute proofs of connectivity relations in the

unification quotient of a unification graph. These deductions are encoded using unification path
expressions, generated from the edges of the graph using concatenation, the empty path expression
�, and an inverse operation.
The construction of unification path expressions over a labeled directed graph G = 〈�, V ,D〉 is

defined inductively using the system PU of rules shown in Fig. 6. The rules may be thought of as
a type system defining the well-typed unification path expressions from the set of untyped terms
drawn from the term algebra T (�Gr ,D) generated by D. Here, �Gr = {� �→ 0, (.)−1 �→ 1, ◦ �→ 2}
is the group signature. Judgements are of the form G � p : u l−→ v, where p ∈ T ∗(�Gr ,D), the set
of �Gr-terms over D, and l ∈ �∗.

We let G �PU p : u l−→ v denote judgements derived from the rules of Fig. 6. The triple u
l−→ v

is the “type” of the expression p and consists of endpoint vertices u, v and a signature l. We say that
p is a unification path expression from u to v with signature l. The rules of PU mirror the definition of
an equivalence relation and are easily interpretable as connectivity relations. Downward closure,
however, is also captured as a connectivity relation by PU via the DN rule. Given a path p connect-
ing u′ to v′, the DN rule connects the child u of u′ with child v of v′ provided the branch edges b from
u′ to u and b′ from v′ to v have the same label #. This connection involves traversing edge b−1 from
u to u′ labeled #−1, followed by the path expression p from u′ to v′ with signature �, followed by the
edge b′ from v′ to v labeled #. The signature of the resultant path expression b−1pb′ is 3S(�)

(#−1�#),
which is �.
Since the free monoid (D ∪ D−1)∗ extended with the inverse function inv is a �Gr-algebra, the

function flatten from D to (D ∪ D−1)∗ defined by

flatten(c) = c

uniquely extends to thehomomorphismflatten :T ∗(�Gr ,D)−→(D ∪ D−1)∗.Weabbreviateflatten(p)

by p . Thus, � = �, p−1 = inv(p), and pq = p q.
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Fig. 6. The logic PU (G) of unification path expressions over a labeled directed graph G = 〈�, V ,D〉.

The main point of introducing unification path expressions is to show that for each deduction

G �PU p : u l−→ v, p is a unification pathwitnessing themembership of u, v in the unification closure
of G. This is formalized in the next lemma:

Lemma 15 (Soundness and completeness of PU ). Let G = 〈�, V ,D〉 be a labeled directed graph.

(1) (Soundness) If G �PU p : u l′−→ v, then p is a unification path from u to v over G such that
3S(�)

(l(p)) = l′.
(2) (Completeness) If p is a unification path from u to v over G and 3S(�)

(l(p)) = l′, then

G �PU p : u l′−→ v.

Proof. Soundness: By induction on PU deductions.

• INIT: Suppose G �PU c : u !−→ v. Then, c : u !−→ v ∈ G. The result follows immediately since
c = c.

• REF: Obvious.
• SYM: Suppose p is equal to q−1 and G �PU q : v �−→ u

G �PU q−1 : u �−→ v
.

By the induction hypothesis, q is a unification path from v to u overG. By the definition of flatten,
q−1 = inv(q). By Lemma 9, it follows that inv(q) is a unification path from u to v over G whose
label reduces to � under S(�) reduction.

• TRANS: Suppose p is equal to qr and
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G � q : u l′q−→ v′ G � r : v′ l′r−→ v

G � qr : u l′ql′r−→ v

.

Thus, l′ = l′ql′r. By the induction hypothesis, q is a unification path from u to v′ such that l(q),
abbreviated lq, reduces to l′q. By the induction hypothesis again, r is a unification path from u

to v′ such that l(r), abbreviated lr , reduces to l′r . Now, qr = q r. Also, from the definition of
labeled-paths, it follows that q r is a path from u to v labeled lqlr . Furthermore, lq and lr are
both in S∗(�), therefore so is lqlr . Next, we need to show that3S(�)

(lqlr) is equal to l′ql′r . We first
observe that 3S(�)

(lqlr) is equal to 3S(�)
(3S(�)

(lq)3S(�)
(lr)), which is 3S(�)

(l′ql′r). Since both l′q
and l′r are in �∗, there are no S(�) redexes in l′rl′r and hence, 3S(�)

(l′ql′r) = l′ql′r .

• DN: Suppose p equals b−1qb′, u′, and v′ are vertices inG, and b : u′ #−→ u, b′ : v′ #−→ v are branch

edges in G, and G � q : u′ �−→ v′

G � b−1qb′ : u �−→ v
.

By the induction hypothesis, q is a unification path over G from u′ to v′, such that l(q), abbrevi-
ated lq reduces to �. Now, p = b−1qb′ is clearly a path in G ∪ G−1 from u to v. To verify that p is
a unification path over G from u to v, we note that l(p), equal to #lq#

−1, reduces to � under S(�)

rewriting.

Completeness: By a double induction on the derivation of unification path labels and paths in
G ∪ G−1. We are given that p is a unification path from u to v with label l(p). Since p is a unification
path, lp ∈ S∗(�), where lp abbreviates l(p). Let 3S(�)

(lp ) = l′p .

• lp = �: Then, l′p = �. there are four cases:

◦ REF: p = �. Then, u = v and G �PU � : u �−→ u by the REF rule.
◦ INIT: p = a, where a is an equational edge from u to v. ThenG �PU a : u �−→ v by the INIT rule.
◦ SYM: p = a−1, where a is an equational edge from v to u. Then,G �PU p : u �−→ v follows from
one application of the INIT rule and one application of the SYM rule:

G � a : v �−→ v
INIT

G � a−1 : u �−→ v
SYM

.

◦ TRANS: p = qr, where G ∪ G−1 |= q : u −→ v′ and G ∪ G−1 |= r : v′ −→ v are paths in G ∪
G−1. Since lp = �, it follows that l(q), abbreviated lq and l(r), abbreviated lr are both �. There-
fore, both q and r are unification paths. By the inductive hypothesis, G �PU q : u �−→ v′ and
G �PU q : v �−→ v. Using the TRANS rule,

...

G � q : u �−→ v′
...

G � r : v′ �−→ v

G � qr : u �−→ v
TRANS
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• lp = lq#
−1lr#ls, where lq, lr , ls ∈ S0(�) and # ∈ �. ByLemma 1 andLemma2, there are vertices u′,

u′′, v′′, v′ inG andpaths q, r, s andbranch edges b and b′ inG such that p = qb−1rb′s,G ∪ G−1 |= q :
u

lq−→ u′, b : u′′ #−→ u′ ∈ D, G ∪ G−1 |= r : u′′ lr−→ v′′, b′ : v′′ #−→ v′ ∈ D, G ∪ G−1 |= s : v′ ls−→ v.
By the induction hypothesis, G �PU q : u �−→ u′, G �PU r : u′′ �−→ v′′, and G �PU s : v′ �−→ v.
Thus, we have the PU deduction

...

G �PU q : u �−→ u′

...

G � r : u′′ �−→ v′′

G � b−1rb : u′ �−→ v′ DN

G � qb−1rb : u �−→ v′ TRANS ...

G � s : v′ �−→ v

G � qb−1rbs : u �−→ v
TRANS

• lp = lq#lr where lq, lr ∈ S∗(�)and # ∈ �.Again, byLemma1andLemma2, there are verticesu′, v′

in V and paths q, r and edge b in D such that p = qbr, G ∪ G−1 |= q : u lq−→ u′, b : u′ #−→ v′ ∈ D,

G ∪ G−1 |= r : v′ lr−→ v. Let l′q and l′r are equal to 3S(�)
(lq) and 3S(�)

(lr) respectively. By the

induction hypothesis, G �PU q : u l′q−→ u′ and G �PU r : v′ l′r−→ v. Now, 3S(�)
(lq#lr) is equal to

3S(�)
(l′q#l′r). This in turn is equal to l′q#l′r , since l′r , #, and l′q are in �∗. Thus, we have the PU

deduction

G � q : u l′q−→ u′ G � b : u′ #−→ v′
INIT

G � qb : u l′q#−→ v′
TRANS ...

G � r : v′ ł′r−→ v

G � qbr : u l′q#l′r−→ v

TRANS

This completes the proof. �
The above result, and those of Theorem 11 andTheorem 14 imply the soundness and completeness

of PU deductions with respect to connectivity in the ∼-quotient graph:

Theorem 16 (Soundness and completeness of PU deductions).LetG = 〈�, V ,D〉 be a labeled directed
graph whose unification closure is ∼ .

(1) (Soundness) If G �PU p : u l−→ v, then G/∼|= u
l−→ v.

(2) (Completeness) If G/∼ |= u
l−→ v, then G �PU p : u l−→ v where p is a �Gr-term over D.

The results of this section show how PU is adequate as a logic of unification. It seems reasonable
to ask, then, how structure-sharing unification algorithms implement this logic. The answer to this
question leads us to the design of an algorithm that integrates the proof construction in PU with
unification. We call this a unification algorithm with source-tracking and turn our attention to it in
the next section.
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6. Unification algorithm with source-tracking

The goal of this section is to show how to adapt standard structure-sharing unification algo-
rithms to construct proofs of unification in the logic PU . Since PU relates vertices of the unification
graph, it is more natural to integrate the derivation of PU deductions with graph-based unification
algorithms than transformation based algorithms like that of Martelli and Montanari [37].

6.1. The Robinson unification algorithm

Fig. 7 illustrates a “text-book” variety unification algorithm. This is the recursive version of Rob-
inson’s linear space, exponential time algorithm operating on term graphs with structure sharing
[47]. (See, for example, its presentation in [2] and also [1], p. 85). There are of course, many other
unification algorithms whose theoretical worst case behavior is much better than Robinson’s, like
the quadratic one due to Corbin and Bidoit [16] obtained by a simple modification to Robinson’s,
the almost linear time algorithms of Huet [28] and Ružička and Prívara [49] and Baxter [4], and the
linear time algorithms due to Paterson andWegman [43] andMartelli andMontanari [37], to men-
tion a few. Despite its exponential worst-case behavior, the Robinson algorithm is quite efficient in
practice and is commonly used inmany practical implementations of unification.We have therefore
chosen to use it to illustrate the integration of source-tracking information with unification.
The algorithm operates on a term graph structure that is acyclic. Each vertex v of the unification

graph has the following fields: a type field which identifies whether v is strict or is a function vertex.
A binding field which is either empty (in which case v is unbound) or a pointer to a variable v′ related
to v by the unification closure. The procedure unify takes a pair of vertices and either terminates suc-
cessfully indicating that the terms represented by the vertices have unified, or fails, indicating either
a clash or a cycle. Equivalence classes of vertices are maintained as a tree via the binding pointer.
The procedure find takes a vertex v and returns the root of the tree representing the equivalence class
[v]. The procedure union takes a pair of roots of equivalence classes and merges them by making
the binding pointer of one of the roots point to the other root. The procedure occurs? (v1, v2) deter-
mines whether the term represented by vertex [v2] is reachable from [v1] in the quotient graph.More
precisely, occurs?(v1, v2) returns either no, or yes(x), where x ∈ {0,+}. If it returns no, then [v1] and
[v2] are unconnected in the quotient graph. If occurs?(v1, v2) returns yes(0), then [v1] = [v2], that is
v1 ∼ v2. Otherwise, [v1] and [v2] are distinct and [v2] is reachable from [v1] in the quotient graph.
The proofs of termination, correctness, and the exponential time complexity (and linear space-

complexity) of the Robinson unification algorithm are standard and can be found in several places.
(See [1] and also [2], for example.)

6.2. Source-tracking the Robinson algorithm

We now consider how the computation of source-tracking information can be built into the
Robinson algorithm. Only a simple addition of proof information is needed to accommodate the
construction of PU deductions by the unification algorithm of Fig. 7. The construction requires
adding an additional “proof” parameter—which turns out to be a unification path expression—
to the algorithm. The extra parameter may be informally interpreted as containing the execution
“trace” of PU inferences made by the unification algorithm.
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Fig. 7. Computing themost general unifier, based on the recursive, structure-sharing term graph version of theRobinson
unification algorithm [47]. This presentation has been adapted from [2] and also from [1], p. 85.

Fig. 8 shows the unification algorithm of Fig. 7 with source-tracking information attached is
shown in . In the extended unification algorithm, the binding field contains an additional attribute,
which is a unification path expression denoting the path expression from v to v′. The procedure find
takes a variable v, follows a chain of binding pointers starting from v and returns, in addition to
the root of the equivalence class under unification closure containing v, a path expression from v to
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Fig. 8. The unification algorithm of Fig. 7 extended with source-tracking.

the root. The procedures unify and union also carry an extra parameter which is a unification path
expression. The union procedure sets the binding field. The procedure occurs?(u, v) returns either
no or yes(x, p), where x is either 0 or +, and p is a unification path expression from u to v.
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Some of the unification paths constructed by the algorithm are schematically illustrated in Figs.
9–11.
If m : 21 ?= 22 is a term equation, its unification graph G contains term trees rooted at vertices v1

and v2, representing the terms 21 and 22 respectively, and an equational edge from v1 to v2 labeled
m. The first call to unify is unify(v1, v2,m). The unification algorithm maintains the invariant that
for every call unify(v1, v2, p),G �PU p : u �−→ v. Also, if find(v1) = 〈r1, p1〉, thenG �PU p1 : v1 �−→ r1.
Similarly, if find(v2) = 〈r2, p2〉, then G �PU p2 : v2 �−→ r2. The call union(r1, r2, p) maintains the in-
variant that G �PU p : r1 �−→ r2. If the call unify(v1, v2,m) results in the call union(r1, r2, p

−1
1 mp2),

binding r1 to r2, where find(v1) = 〈r1, p1〉 and find(v2) = 〈r2, p2〉, then the vertex r2 and the path
expression p−1

1 mp2 are stored as the binding information r1.binding (see Fig. 9A). The path p−1
1 mp2

implicitly carries the information that v1 is connected to v2 with the path m. The algebra of path

Fig. 9. Schematic view of path expression construction in procedure unify of Fig. 8. (A) The unification path expression
constructed at lines 05, 09, and 13. (B) The path constructed at line 10.

Fig. 10. Schematic view of path expression construction in procedure unify of Fig. 8 at line 16. u1 and u2 abbreviate
r1.child(i) and r2.child(i), respectively, in line 16 of unify.

Fig. 11. Schematic view of path expression construction in procedures find and occurs of the unification source-tracking
algorithm of Fig. 8. (A) The unification path expression constructed at line 23 of procedure find. (B) The unification path
expression constructed at line 34 of procedure occurs?
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expressions allows us to recover the information that v1 is connected to v2 bym. We simply compute
the path expression following the binding pointers from v1 to v2, which is done in three steps:

(1) compute the path expression from v1 to r1 using find(v1), which is p1.
(2) compute the path from r1 to r2 using find(r1), which is p

−1
1 mp2.

(3) compute the path from r2 to v2, which is p
−1
2 .

The concatenation of these three path expressions, p1p
−1
1 mp2p

−1
2 , simplifies tom using the rewrite

rules discussed later in Section 7. All paths expressionsmanipulated by the algorithm are unification
path expressions.

Theorem 17 (Invariants of the unification source-tracking algorithm).LetG be a�-unification graph

of a term equation 21
?= 22 between the �-terms 21 and 22 represented by the term graphs rooted at

vertices v1 and v2 and connected by an equational edge m. Let the top-level invocation of the unifi-
cation algorithm of Fig. 8 be unify(v1, v2,m). Then, the following invariants are maintained for each
subsequent call to unify, union, find, occurs?, and fail.

(1) For each call unify(u, v, p),G �PU p : u �−→ v.

(2) For each call union(u, v, p),G �PU p : u �−→ v.

(3) For each call fail(CYCLE, u, s),G �PU s : u l−→ u, where l ∈ �+
N

.

(4) For each call fail(CLASH , u, v, s), u and v are function vertices such that L(u) /= L(v), and G �PU

s : u �−→ v.

(5) If find(u) = 〈v, p〉, then G �PU p : u �−→ v.

(6) If occurs?(u, v) = yes(x, p), then x ∈ {0,+},G �PU p : u l−→ v and l ∈ �x

N
.

Proof.Without loss of generality, we assume that the system of term equations represented by the
unification graph consists of a single equation. Thus, there is a single “top-level” call unify(v1, v2,m),
wherem represents an equational edge. Clearly, the above algorithm terminates since the unification
algorithm terminates. For the calls to unify, we show that the invariant is true at each call within
the body of the unify procedure, assuming the invariant is true at the entry to the procedure and
assuming the invariants for find and occurs? are true.
For the base case corresponding to the top-level call unify(v1, v2,m), m is just equal to the equa-

tional edge labeled � connecting vertices v1 and v2 in G. Therefore, using the INIT rule, we have
G �PU p : v1 �−→ v2.
For the inductive case, we construct PU deductions for calls at each of the following locations:

(1) Line 2: By the inductive hypothesis, G �PU p1 : v1 �−→ r1 and G �PU p2 : v2 �−→ r2. Also,
G �PU m : v1 �−→ v2 using the INIT rule. Using one application of the SYM rule and two
applications of the TRANS rules, we have G �PU p−1

1 mp2 : r1 �−→ r2. This proves the invari-
ant for the calls to union on lines 5, 9, and the clash on line 13.

(2) Line 6: Using one application of the SYM rule, we get G �PU m−1 : v2 �−→ v1.
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(3) Line 10:By the inductionhypothesis, and the fact that r1 and r2 are rootsofdifferent equivalence

classes, it follows that G �PU q : r2 l−→ r1, where l ∈ �+
N . Again, using the SYM

and TRANS rules, we obtain the following deduction for a cycle involving

r1: G �PU p−1
1 mp2q : r1 l−→ r1, where l ∈ �+

N
.

(4) Line 16: From the invariant at line 2 (see (1)), we haveG �PU p−1
1 mp2 : r1 �−→ r2. From this, and

lines 17 and 18, using the DN rule, we can construct a deduction for
G �PU b−1

1 p−1
1 mp2b2 : r1.child(i) �−→ r2.child(i).

From the invariant (2) just proved about union, and from line 19, we conclude that whenever
u.binding = 〈v, p〉, it is the case that G �PU p : u �−→ v.
We prove the invariants for find and occurs? by induction on the depth of their calls. For the

base case of invariant (5) of find, if v is unbound, then find(v) = 〈v, �〉. Clearly, using the REF rule,
G �PU � : v �−→ v. Otherwise, from line 22, we have G �PU p : v �−→ v′ and from the inductive hy-
pothesis and line23,wehave,G �PU q : v′ �−→ r.Using theTRANSrule,wehaveG �PU pq : v �−→ r.
To show invariant (6) of occurs?, we examine the return values at lines 26 and 34. By the in-

ductive hypothesis, the invariants for find hold. Therefore, from line 25, G �PU p1 : v1 �−→ r1 and
G �PU p2 : v2 �−→ r2. On line 26, using one application of the SYM rule and one application of the
TRANS rule (since r1 = r2), we get G �PU p1p

−1
2 : v1 �−→ v2.

From the induction hypothesis, on line 34,G �PU q : r1.child(i) l−→ r2, where l ∈ �∗
N
. From line

35, using the INIT rule, we have G �PU b : r1 f.i−→ r1.child(i), where f abbreviates L(r1). From line
25, we have G �PU p1 : v1 �−→ r1 and G �PU p2 : v2 �−→ r2. From these, using one application of

the SYM rule and three applications of the TRANS rule, we get G �PU p1bqp
−1
2 : v1 f.i l−→ v2, where

Since l ∈ �∗
N
, it follows that f.i l ∈ �+

N
. �

The invariants show that at each stage, the unification algorithm with source tracking not only
constructs the unification closure ∼ of a unification graph G, but also computes witnesses of mem-
bership in the relation ∼. These witnesses are unification path expressions. When unify fails, the
algorithm presents a witness of non-unifiability:

Corollary 18 (Witnesses to non-unifiability). Let G be a�-unification graph of term equation 21
?= 22

between �-terms 21 and 22 represented by the term graphs rooted at vertices v1 and v2 and connected
by an equational edge m. Let unify(v1, v2,m) be the top-level call of the unification algorithm. Then

(1) If unify = fail(CYCLE, u, q), then G �PU q : u l−→ u and l ∈ �+
N

.

(2) If unify = fail(CLASH ,w,w′, q), then G �PU q : w �−→ w′ for function vertices w,w′ in G such
that L(w) /= L(w′).

The source-tracking algorithm of Fig. 8 can be seen as a constructive extension of the unification
algorithm of Fig. 7. It returns a proof object of every inference it makes. The algorithm of Fig. 7 can
be recovered from that of Fig. 8 by suppressing the path expression parameters and return values.
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To see how the source-tracking algorithm of Fig. 8 works, consider the following example:

Example 19. Let E be the system of equations

{a1 : x ?= int, a2 : y ?= z, a3 : y ?= int}.
Fig. 12 shows the unification graph of these three equations consisting of three variable vertices

x, y , and z and one function vertex w labeled int. Assuming the three equations are chosen for
unification in the order a1, a2, a3, the resulting sequence of calls to unify using the source-tracking
algorithm of Fig. 8 is

(1) unify(x,w, a1),
(2) unify(y , z, a2),
(3) unify(y ,w, a3).

The result of these calls generates the graph shown in Fig. 12B. Note that in this graph, each edge
denotes a binding pointer and not an edge of the original graph in Fig. 12A. The annotations on
each binding pointer are computed using the source-tracking algorithm. The annotations are such
that navigating between any two vertices will generate the unification path expression witnessing
the connection between the two vertices. For example, to check how y is connected to the function
vertex w labeled int, we invoke the query occurs?(y ,w), which returns yes(0, a2a

−1
2 a3), indicating

y ∼ w and the unification path witnessing this is the unification path expression a2a
−1
2 a3.

This expression can be simplified (using rules discussed in the next section), to a3, eliminating the
irrelevant deductions involving equations a2.

Fig. 12. The representation of equations of Example 19. (A) The graph of the original equations. (B) The binding pointers
annotated with unification path expressions constructed by the unification source-tracking algorithm of Fig. 8. Running
the ordinary unification algorithm of Fig. 7 will result in the graph with the same binding pointer structure as shown in
(B), but without the annotations.
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6.3. Accommodating optimizations

We discuss how to accommodate source-tracking with two common optimizations of the unifi-
cation algorithm of Fig. 8. The first optimization, due to Corbin and Bidoit [16], includes a small
but significant change to the unification algorithm of Fig. 7 which reduces the time complexity from
exponential to quadratic. The modification involves inserting a call to union(r1, r2) between lines 14
and 15 of the Robinson algorithm of Fig. 7. Accommodating this optimization with source-tracking
involves inserting the call union(r1, r2, p

−1
1 mp2) between lines 14 and 15 of the Robinson algorithm

with source-tracking of Fig. 8.
Path compression is a common optimization employed for speeding up the find procedure [51].

Path compression can easily be added to the algorithm shown in Fig. 8. The find procedure of Fig.
8 needs to be replaced by the procedure findcompress. In this procedure, before returning the pair
consisting of the root and the path to the root of a variable, the variable’s binding is assigned that
pair. The procedure findcompress is shown in Fig. 13.
Continuing Example 19, a findcompress(y) query on the unification graph of Fig. 12B results in

the graph shown in Fig. 14. Note the binding of variable y and its annotation a2a
−1
2 a3, which when

simplified using rules discussed in the next section, yields a3. Both the graphs of Figs. 12B and 14
correctly encode the path information of the original graph of Fig. 12A.
We have illustrated how the construction of unification path expressions encoding PU deduc-

tions can be easily incorporated into standard unification algorithms based on structure-sharing
unification graphs. These path expressions, however, could encode redundant edge traversals some
of which could cancel out, like the path expression a2a

−1
2 a3 annotating the edge from y to w in

Fig. 14. This expression can be simplified to a3 by reducing a2a
−1
2 to � using cancellation rules.

Simplification using a formal rewrite system is the subject of the next section.

Fig. 13. The procedure findcompress for implementing source-tracking in the presence of path compression.

Fig. 14. The result of path compression after the query findcompress(y) is applied on the unification graph of Fig. 12B.
The figure also illustrates the sequence of calls to unify preceding the query findcompress.
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7. Simplification of unification path expressions

Simplification of unification path expressions is achieved using the rewrite system R/A for free
groups of Peterson and Stickel [44]. The rewrite system is shown in Fig. 15. (For a general introduc-
tion to term rewriting systems, see, for example, Baader and Nipkow’s text [1].)

Theorem20 ([44]).The equational systemR/A is convergent and completewith respect to the equational
theory of free groups.

The normal form of a term p under R/A rewriting is denoted 3Gr (p). It may be computed by
first flattening p to p and then reducing p to its normal form by applying the two-sided cancellation
rules:

Lemma 21 (Decomposition of normal forms). If D is any set and p ∈ T ∗(�Gr ,D), then 3Gr(p)= 3S2 (D)
(p).

Proof. It is easy to see that p
∗−→R/A p and therefore p and p have the same normal form under

R/A. Since p is flattened, every symbol in p is either c−1 or c, where c ∈ D. Hence, the only redexes
in p are of the form cc−1 −→R/A � and c−1c −→R/A �. The redexes using S2(D) are the same.

7.1. Weak subject reduction

Since unification path expressions are “typed,” and the rewrite system operates on “untyped”
terms, it is important to examine the effect of rewriting on the types of expressions. Unification
path expressions are not closed under one-step R/A rewriting. Thus, PU lacks the subject reduction
property with respect to R/A rewriting. The types “lost” after one step of rewriting are, however,
recovered at normalization. We refer to this phenomenon as weak subject reduction. We illustrate
this idea through an example.

Fig. 15. Equational rewrite system R/A for free groups, where A consists of the Equational rule of Associativity and R

consists of the remaining rules [44].
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Example 22 (Types are not “preserved” by one-step rewriting in R/A, but are recovered at normaliza-
tion.).
Let G be a labeled directed graph consisting of the edges

{a : w �−→ w′, b1 : w f.1−→ u, b2 : w′ f.1−→ v}.

Letp = (b−1
1 (ab2))

−1. Clearly,G �PU p : v �−→ u. Ifq = (ab2)
−1(b−1

1 )−1, thenp −→R/A q, butG ��PU

q : v �−→ u. However,G �PU b−1
2 a−1b1 : v �−→ u, where b−1

2 a−1b1 is the normal formof p and q under
R/A rewriting.

Simplification using R/A rewriting is justified because unification path expressions normalize to
unification paths of the same type. To show this, we rely on the following easily proved property
about Dyck languages: reduction by two-sided cancellations on S∗(�) words can be simulated by
one-sided cancellation:

Lemma 23 (Closure of S∗(�) words under S2(�) reduction). If x ∈ S∗(�) and x −→S2(�)
y , then

x ≈S(�)
y and 3S(�)

(x) = 3S(�)
(y).

Proof. By a case analysis on the rules of S2 . Let # ∈ �.

(1) #−1# −→ �: l = r#−1#s and l′ = rs for some r, s ∈ (� ∪ �−1)∗. Since the redex #−1# is being
reduced to �, and #−1# ≈ � ∈ S(�), it follows that l ≈S(�)

l′.
(2) ##−1 −→ �: l = r##−1s and l′ = rs, for some # ∈ �and r, s ∈ (� ∪ �−1)∗. ByLemma7, s = s1#s2,

where s1 ∈ S0. Again, since # occurs in l, there are two cases:

(a) r = r1#
−1r2, where r2 ∈ S0: Therefore,

l = r##−1s given
= r1#

−1r2##
−1s1#s2 by Lemma 7

∗−→S r1��s2 since r2, s1 ∈ S0

∗−→S r1s2 and
l′ = rs given

= r1#
−1r2s1#s2 since r = r1#

−1r2, s = s1#s2∗−→S r1�s2 since r2, s1 ∈ S0

∗−→S r1s2

Hence, we have, l ≈S(�)
r1s2 ≈S(�)

l′,
(b) r ∈ S∗(�) and #s ∈ S∗. Therefore, l = r##−1s1#s2. Since s1 ∈ S0, l

∗−→S r#s2. Also, l′ =
rs1#s2. Since s1 ∈ S0, l′ ∗−→S r#s2. Hence both l and l′ reduce to r#s2, implying l ≈S(�)

r#s2 ≈S l′. �
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Theorem 24 (PU weak subject reduction). Let G be a labeled directed graph and G �PU p : u l−→ v.

If p ′ = 3Gr (p), then G �PU p ′ : u l−→ v.

Proof. By Lemma 15, G �PU p : u l−→ v implies G �PU p : u l−→ v. By Lemma 21, p ′ = 3S2(D)
(p).

Since p
∗−→S2(D)

p ′, it follows that l(p) ∗−→S2(�)
l(p ′). Since l(p)∈S∗(�), byLemma23,3S(�)

(l(p ′))

is equal to3S(�)
(l(p)), which is l. ThenG �PU p ′ : u l−→ v follows fromLemma 15 (Completeness).

�

7.2. Efficiency considerations

The cost of constructing unification path expressions at each point in the algorithm of Fig. 8 is
constant time per call to unify, find, union, and occurs?, assuming paths are represented as terms shar-
ing structure. Thus, the addition of source-tracking to the unification algorithm of Fig. 7 increases
its runtime by only a constant factor.
Since normalization is orthogonal to the building of path expressions, it may be performed once

the unification path expression has been computed. It is easily seen that normalization using R/A

takes time proportional to the size of the termbeing normalized.Although the normal formdoes not
always correspond to the shortest unification path, its computation is considerably less expensive
than that of the shortest unification path.

A unification path p of type u
l−→ v in a labeled directed graph G is minimal if there is no

unification path q of type u
l−→ v in G such that the edge set of q is a proper subset of the edge set

of p . The normal forms obtained by R/A rewriting do not yield minimal unification paths. Consider
the example set of equations {a : x ?= y , a′ : y ?= x}. The path a′a−1 : y �−→ y does not reduce to the
minimal path � : y �−→ y under R/A rewriting without the presence of a “type aware” rule that
rewrites p to � if p : u �−→ u.

8. Related research

We briefly survey the various approaches to the error diagnosis in unification and unification-
based systems, including type inference and logic programming.

8.1. Logic programming and unification-based systems

Port [45] carried out unification failure analysis by identifying minimally unifiable subsets. Port’s
algorithm constructs regular path expressions over the unification graph. Our work shows that the
path expressions of relevance are context-free, not regular.
Cox [17] and Chen et al. [10] propose an algorithm to derive maximally unifiable subsets

and minimally non-unifiable subsets of term equations employed as the basis for developing
search strategies for breadth-first resolution of logic programs. Our extension to the unifi-
cation algorithm keeps track of information that is more precise than subsets. Furthermore,
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the information maintained statically in the auxiliary graph constructed by the algorithm of
Chen et al. can be generated dynamically in our extension to the unification algorithm. On
the other hand, the simplification framework proposed in this paper does not address mini-
mality.
Two approaches closely related to ours are the unification failure analysis of Cox [18] and

the Logics of Unification by Le Chenadec [34]. Cox treats the unification graph as a push-
down automaton in which the vertices and edges of the unification graph form the states and
transitions of the automaton respectively. However, because the formalization is in terms of
a transition relation on configuration states, the connection with labeled-paths is not made
in the paper. On the other hand, our framework is based on labeled semi-Dyck paths and
emphasizes unification as a path connectivity problem. This results in a clearer and more gen-
eral formalism. For example, we are able to precisely formulate the relation between arbitrary
paths in the quotient graph (not just cycles, as in Cox’s paper [18]) with the path structure
in the original graph.
Le Chenadec [34] introduces a framework of logical systems to characterize unification and

congruence closure. PU is equivalent to Le Chenadec’s logic LE0: both LE0 and PU are sound
and complete with respect to paths in the quotient unification graph. The syntactic machinery
of Le Chenadec’s logics, however, involves terms and contexts, whereas PU is a logic of labeled-
paths on graph vertices that is explicitly aware of the sharing relationship between subterms. The
connection with context-free languages makes it possible for us to extract simple and practical
algorithms for proof construction, something that is harder to do from the work of Cox and Le
Chenadec.

8.2. Diagnosis of type inference

To provide explanations of type inference,Wand [55] and later Beaven and Stansifer [5] andDug-
gan and Bent [21] modified the unification algorithm to accumulate sets of reasons (called “reason
lists” in [55]) when traversing the unification graph. Each reason in the reason list is a fragment
of the original source code of the program whose type is being inferred. However, as noted in [21],
Wand’s algorithm sometimes fails to report reasons critical to the reconstruction of the unification
failure, and at other times returns redundant information. Wand’s paper leaves open the question
of formulating a soundness and completeness criterion for type explanation.
While [55] and [5] rely on explicitly carrying type substitutions, Duggan and Bent’s algorithm

relies on the graph version of the Robinson unification algorithm in which substitutions are main-
tained by updating binding pointers of variables. Duggan and Bent also propose a path-based
approach. In this respect, their approach is similar to ours. UnlikeWand, they do provide some for-
malization of the paths computed by their unification algorithm.However, this formalization seems
to be tied to type inference (the main concern of their paper) rather than unification closure. Their
paper also contains an elaborate discussion of the implications of using other unification algorithms
for deriving type explanations. Because Duggan and Bent’s algorithm also relies on manipulation
of paths, it is worth comparing the unification algorithm for type explanation in (Duggan and Bent
[21, Appendix C]) with our algorithm in some detail.
Our source-tracking algorithm works by computing unification path expressions and annotat-

ing binding pointers with them. But for the annotations, it is essentially the standard unification
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algorithm. Duggan and Bent’s algorithm, in contrast, relies on a somewhat more radical modi-
fication of the unification algorithm: unification now involves reversing the binding pointers of
all variables in the paths from these variables to their respective roots. Unification of the three
equations of Example 19 using Duggan and Bent’s algorithm results in the unification graph of
Fig. 16. The details of how the changes are done to the pointers are described in their algorithm
and are skipped here. Since Duggan’s and Bent’s algorithm does not have the notion of a positive
and negative traversal of edges, it relies on “accumulation” rather than algebraic composition of
path information. Redundant equations are removed using a separate pass outside their unification
algorithm. Since these paths are not treated as proof objects, elimination of duplicates seems to
work, but their paper does not formalize this aspect.
Duggan and Bent also report problems with their algorithm in the presence of path compression,

whereas our algorithm handles path compression easily. Path compression is handled by a much
more complex algorithm (in Appendix D of their paper). Much of the complexity is due to address-
ing the related but separate problem of polymorphism. Another advantage of our algorithm is that
it easily generates correct source-tracking information during subterm unification, as shown in Fig.
10. Duggan and Bent’s algorithm relies on a different mechanism [21, Appendix C], which keeps
track of unification histories during subterm unification.
Soosaipillai, in her Master’s thesis [50] constructs a type explanation system that requires in-

teractive navigation. Gomard [23] introduces partial type inference to isolate untypable parts of a
program. Bernstein and Stark [6] consider an extended ML type system to locate untypable parts
of a program.
Johnson and Walz [29,54] introduce “error-tolerant” unification, in which a multi-set of type

constraints is solved by using a disjunction of constraints rather than a conjunction. For example,
error-tolerant unification of the constraint multi-set

{t ?= bool, t ?= bool, t ?= int}

yields the solution

t = int[1]|bool[2].
This indicates that t has the ‘options’ int and bool with indicated strengths.

Fig. 16. Schematic view of result of path reversal using Duggan and Bent’s unification algorithm [21].
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JohnsonandWalz’s scheme rests ona complicatedalgorithm that derives implied type constraints
obtained from the original type constraints by applying the rules of substitution and transitivity.
Unfortunately, their work presents no correctness and completeness criterion against which their al-
gorithmcanbe judged. Their approach, however,maybe useful in conjunctionwith “soft typing” [9].
There has been considerable work in the last few years in the area of type error diagnosis using

explanation-based and graphical front-ends, specially in the presence of polymorphic type infer-
ence. Yang’s system [58] provides a visual front end for type explanation. Gandhe et al. [22] use
Cox’s pushdown automaton [18] to repair type errors in the simply typed �-calculus. McAdam’s
thesis work also builds a framework for type repair in addition to locating type errors [39]. The
M algorithm of Lee and Yi [35], uses a top-down version of Milner’s original W algorithm [41]
and shows that type errors are flagged “earlier” than the W algorithm. Yang et al. [59] propose an
incremental type inference algorithm. Chitil [11] focuses on compositional type explanations. Haack
andWells [24] focus on the generation of minimal program slices which combines the use of a novel
unification algorithm with a constraint collecting algorithm due to Damas [19]. Their analysis of
type diagnosis is inspired by intersection types, while the recent work of Neubauer and Thiemann
[42] employs disjoint unions. Many of these systems are based on the display and navigation of
the unification graph in conjunction with the program graph and offer some form of automated
generation of explanations.
Trace-based approaches for type error diagnoses have also been suggested. Early work here is

Maruyama et al. [38]. The problem with tracing is the large output, often with redundancies. Re-
cently, Heeren et al. [26] have proposed the use of type inference directives and specialized type
rules to control the order of unification and type inference.
The unification path obtained by normalizing the output of our source-tracking unification algo-

rithm may be considered as a slice of the unification graph. “Origin tracking” [7,52,53] has focused
on a formal approach to program slicing based on term rewrite systems. This work has been applied
to locating errors in statically typed languages with type checking but without type inference [20].
Term unification may also be approached as a rewriting system in which equations are transformed
to a solved form if unifiable [33,37], in contrast to the relational approach of computing closures
over a unification graph, which is closer to practical implementations. Results from origin-track-
ing are likely to be applicable to the transformational view of unification, but it appears that this
approach is much harder than the one outlined in this paper.
Wehave related unificationwith a formof context-free reachability. Context-free language reach-

ability, however, has had many applications to compiling and program slicing of functional and
imperative programs. The main work here is Reps and others (see for example Melski and Reps
[40] ans also Reps [46]), which connects program slicing, context-free reachability and set-based
analysis.

9. Conclusions and future work

We have connected unification proofs with labeled-path problems over an important class of
context-free languages, the semi-Dyck sets. The deduction system presented here can be used as a
formalism to evaluate approaches for computing unification errors. The characterization of unifi-
cation proofs in terms of labeled-path expressions allows us to employ context-free path algorithms
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to compute minimum length unification proofs using context-free labeled shortest-path algorithms.
On the other hand, a simple extension to the structure-sharing based unification algorithms allows
unification proofs to be inexpensively constructed and simplified. This extension of the unification
algorithm has been implemented in Scheme [12].
The design of fast algorithms for semi-Dyck labeled-path problems, which will help the efficient

construction of optimized unification proofs, remains to be investigated. Some progress in this
front has been made recently using a novel scheme for reduction fromDyck reachability to set con-
straints [32]. Also, it is worthwhile examining how the path-based framework proposed here can be
extended to diagnosis of unification failure in higher-order unification, equational unification, and
semi-unification. Finally, from a practical viewpoint, it will be valuable to integrate the unification
source-trackingalgorithmwith logicprogramming systems fordiagnosis of the success and failureof
queries and with static type reconstruction systems for diagnosis of type errors. Preliminary work in
the direction of applying the above framework to type error reconstruction has been reported in [13].
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