
A Compositionality Principle
for Syntactic Unification

Venkatesh Choppella
choppell@iiitmk.ac.in

Indian Institute of Information Technology and Management Kerala
and Tata Consultancy Services

Technopark, Thiruvananthapuram, Kerala 695 581, India

Abstract. Many unification based systems, including type reconstruc-
tion, logic programming, and theorem proving, operate by constructing
and composing unifiers. Often, these unifiers are constructed in a non-
compositional manner. This non-compositionality makes reasoning with
these systems more cumbersome, specially during debugging. We pro-
pose an elementary compositionality principle for syntactic unification
to avoid substitution-based non-compositional reasoning. The principle
makes explicit the system of term equations to be unified and relates
their union with unifier composition: if s1 and s′

2 are the most general
unifiers of term equation sets E1 and s1E2 respectively, then their com-
position s′

2s1 is the most general unifier of E1 ∪E2. This result allows a
shift from a non-compositional computation of substitutions to a com-
positional construction of term equations. We have applied this principle
to formalize the connection between substitution-based type reconstruc-
tion algorithms and equation-based algorithms and have designed a type-
equation reformulation Milner’s W algorithm for type reconstruction [1].

1 Introduction

Syntactic unification is at the heart of many symbolic computation systems,
including automated deduction, term rewriting, logic programming, and type
reconstruction.

In programming language semantics, much importance is placed on the prop-
erty of compositionality. An evaluation function [[.]] is compositional if, for a com-
pound expression c(e1, e2) consisting of immediate subexpressions e1 and e2, the
valuation of c(e1, e2) is a function of the valuations of e1 and e2. In other words,

[[c(e1, e2)]] = f([[e1]], [[e2]])

Compositionality requires that the valuation of e2 not be dependent on the result
of valuation of e1 (and vice versa).

In many algorithms that rely on unification, the computation of unifiers vio-
lates compositionality. In this paper, we introduce a principle for syntactic uni-
fication that offers a way out of this non-compositionality. The principle relates



the union of term equations and composition of most general unifiers (mgu’s): If
s1 and s′

2 are the mgu’s of term equation sets E1 and s1E2 respectively, then their
composition s′

2s1 is the mgu of E1 ∪E2. Using this principle, non-compositional
computation of unifiers may be replaced with a compositional construction of
term equations.

We have used the compositionality principle proposed here to prove the cor-
rectness of the WE algorithm for type reconstruction. WE is a reformulation
of Milner’s W polymorphic type reconstruction algorithm centered around the
construction of type equations rather than substitutions and useful for source-
tracking and diagnosing type errors [1].

2 Motivation: Source-tracking

Many unification based algorithms operate by constructing and composing sub-
stitutions. Examples include type reconstruction, logic programming, automated
theorem proving, etc. Reasoning with substitutions, however, can be cumber-
some. Often, the non-compositional construction of substitutions from interme-
diate substitutions introduces a sequentiality and asymmetry that makes formal
reasoning awkward and difficult. Furthermore, since unifiers do not preserve the
exact syntactic form of the equations they solve, it is difficult to directly use
such algorithms for the purpose of source-tracking , tracing a program’s execu-
tion in terms of its original source, specially in the case of errors. We consider
two examples to illustrate our point: type reconstruction and logic programming.

2.1 Type reconstruction

Polymorphic type reconstruction in the Damas-Milner type system [2] is imple-
mented using Milner’s W algorithm [3]. W operates by computing substitutions
(most general unifiers). As pointed out in McAdam [4], however, there is an
apparent “left-to-right” bias introduced by W when handling the application
construct. The code fragment below shows how the Milner algorithm W com-
putes the type substitution for the application expression @ e1 e2 in the type
environment A:

W : [TypeEnvironment,Expression] −→ [TypeSubstitution,Type]
@ e1 e2:
let 〈s1, τ1〉 = W (A, e1)

and 〈s′
2, τ2〉 = W (s1A, e2)

and u = mgu{s′
2(τ1)

?= τ2 → t}
in 〈u s′

2 s1, u(t)〉
where t is a new type variable

W (@e1e2, A) proceeds by computing the type substitution s1 for e1, and using
s1 to compute the type substitution (s′

2) for e2. A further substitution (mgu) u



is computed as the mgu of the equation s′(τ2)
?= τ2 → t. The final substitution

is computed as a composition u s′
2 s1 of the three intermediate substitutions.

McAdam shows how the “left-to-right bias” resulting from this sequentiality of
substitution computation results in difficult to understand type error messages
returned by W .

The polymorphic type reconstruction algorithm WE avoids the problem of
non-compositionality by generating of type equations (equations over terms rep-
resenting types) rather than substitutions. The type substitution is then obtained
as the most general unifier of the system of type equations generated. WE , like
W takes an expression and a type environment, but returns a pointed set of
type equations 〈t, E〉, where t is a type variable and E is a set of type equations.
The details of the algorithm, its correctness and formal relation to W are in [1].
Here, we show only the code fragment of WE implementing application:

WE : [TypeEnvironment,Expression] −→ [TypeVariable,TypeEquationSet]
@ e1 e2:
let 〈t1, E1〉 = WE(A, e1)

and 〈t2, E2〉 = WE(A, e2)
and E = E1 ∪ E2 ∪ {t1

?= t2 → t}
in 〈t, E〉

where t is a new type variable

Note the compositional manner in which the resultant set of type equations E is
computed from E1 and E2. The computation of E therefore avoids the sequen-
tiality exhibited by W . Both W and WE rely on unification. When the set of
collected type equations E is unifiable, the mgu of the equations yields a type as-
signment. When E is non-unifiable, however, it is possible to analyze the source
of non-unifiability of E, using techniques like unification source-tracking [5] that
are independent of the mechanics of the type reconstruction algorithm. The
construction and correctness of WE relies on the compositionality principle pre-
sented in this paper.

2.2 Logic Programming

Standard implementations of logic programming languages like Prolog use an
execution model that assumes a sequential “left-to-right” control structure. Let
us, for example, consider the following the logic program:

f(X, Z) : − g(X, Y ), h(Y,Z)
g(a, b) : −
h(b, c) : −

A query is a term with logic variables. Solving a query returns a substitution
(if it exists) over the logic variables in the term. In the Prolog execution model
for the above logic program, solving the query ?f(X, Z) returns the most general
unifier sf = {X 7→ a, Z 7→ c}. The computation of sf proceeds by first solving the



subgoal g(X, Y ). This yields the most general unifier sg = {X 7→ a, Y 7→ b}. The
computation then proceeds to solve the subgoal sgh(Y,Z) obtained by applying
the intermediate unifier sg to the term h(Y, Z), yielding the unifier sh = {Z 7→ c}.
The final solution sf is obtained as the composition shsg. The application of the
intermediate substitution sg to h(Y, Z) makes the computation of sf , the result
of the original query ?f(X, Z) non-compositional.

An alternate way to compute the query ?f(X, Z) is to consider an evaluation
model that builds systems of term equations instead of substitutions. Then, the
evaluation of the subgoal g(X, Y ) yields the equation set Eg = {g(X, Y ) ?= g(a, b)}.
The evaluation of the subgoal h(Y, Z) yields Eh = {h(Y, Z) ?= h(b, c)}. The fi-
nal substitution sf is computed as the most general unifier of the equation set
Eg ∪ Eh.

3 Related Research

Lassez et al. [6] examine syntactic unification from an algebraic point of view.
Eder [7] studies algebraic properties of substitutions and unifiers. The unification
algorithm of Martelli and Montanari [8] relies on transforming systems of equa-
tions to solved form and the proof of this algorithm rests on algebraic properties
of unifiers. Surprisingly, none of these works allude to any compositionality prin-
ciple for unification. To the best of our knowledge, the only work that addresses
this problem is McAdam’s paper on polymorphic type reconstruction algorithm
W ′ based on the unification of substitutions [4]. In this approach, McAdam pro-
poses a compositional solution in which the substitutions s1 and s2 computed
from the calls W ′(A, e1) and W ′(A, e2) respectively are combined using a novel
unification algorithm US . In contrast, our approach relies on a basic composi-
tionality property of ordinary unification discussed in this paper. By working
directly with systems of term equation sets, it also has the advantage of preserv-
ing source information (type equations in this case) from which the unifiers are
derived.

4 Basic Definitions

The syntactic unification problem is concerned with solving equations between
terms inductively defined over a denumerable set of variables V and a fixed
signature Σ consisting of a set of constructor symbols and an arity function
mapping each constructor to a natural number. A substitution s is a finite map-
ping from V to terms over V . The domain of a substitution s is indicated dom(s).
The extension ŝ of s is a function from terms to terms defined inductively in the
following way: if τ is a term equal to a variable x ∈ V , then ŝ(τ) is equal to s(x)
if x ∈ dom(s), and x if x 6∈ dom(s). Otherwise, if τ is the term f(τ1, . . . , τn),
where f is a constructor symbol, n its arity, and τ1, . . . , τn are terms, then
ŝ(τ) = f(ŝ(τ1), . . . , ŝ(τn)). We will often overload s to denote its extension ŝ.
Substitutions s1 and s2 are considered equal if ŝ1(x) = ŝ2(x) for each x ∈ V .



If s, s′ are two subsitutions, then their composition s′s is the substitution with
domain dom(s) ∪ dom(s′) defined as s′s(x) = ŝ(ŝ(x)), for each x ∈ dom(s′s).
A substitution is idempotent if s = ss. Idempotent substitutions are not closed
over composition.

If E = {τi
?= τ ′

i} is a set of term equations, a subsitution s is a unifier of
E if for each τi

?= τ ′
i ∈ E, s(τi) = s(τ ′

i). s is a most general unifier (mgu)
of E if for any unifier s′ of E, there is a substitution α such that s′ = αs. s
is an idempotent most general unifier (imgu) of E if s is an mgu of E and is
idempotent. Given a set of equations E and a substitution s, sE denotes the set
of equations {s(τ) ?= s(τ ′) | τ

?= τ ′ ∈ E}.

5 The Compositionality Principle

We start by recounting the following relation between term equation sets, their
unifiers, and substitutions. The first part of Lemma 1 states that unifiers are
closed under composition with substitutions. The second part shows how to
obtain a unifier of a set of term equations E from a substitution s and a unifier
s′ of sE.

Lemma 1. Let E denote a set of term equations, and let s,s′ denote substitu-
tions.

1. If s is a unifier of E, and s′ is a substitution, then s′s is a unifier of E.
2. If s is a substitution and s′ is a unifier of sE, then s′s is a unifier of E.

Proof. – (1): If s is a unifier of E, then sτ = sτ ′ for each τ
?= τ ′ ∈ E. Hence if

s′ is a substitution then s′sτ = s′sτ ′, implying s′s is a unifier of E.
– (2) Again s′sτ = s′sτ ′ for each τ

?= τ ′ ∈ E. Hence s′s is a unifier of E.

Theorem 1 (Compositionality Principle for Syntactic Unification). Let
E1, E2 be sets of term equations, and s1, s

′
2 be substitutions. If s1 is a unifier

(mgu, imgu) of E1, and s′
2 is a unifier (respectively mgu, imgu) of s1E2, then

s′
2s1 is a unifier (respectively mgu, imgu) of E1 ∪ E2.

Proof. Due to (1), s′
2s1 is a unifier of E1, and due to (2), s′

2s1 is a unifier of E2.
Hence, s′

2s1 is a unifier of E1 ∪E2. Now suppose that s1 is an mgu of E1 and s′
2

is an mgu of s1E2. We show that s′
2s1 is an mgu of E1 ∪E2 by showing that if s

is any mgu of E1 ∪E2, then s′
2s1 is more general than s. Since s unifies E1 ∪E2,

it unifies E1 and also E2. Since s1 is an mgu of E1, it follows that s1 is more
general than s, that is, s = rs1 for some substitution r. Since s = rs1, this means
that rs1 unifies E2. That is, rs1(τ) = rs1(τ ′) for each equation τ

?= τ ′ ∈ E2.
Hence r is a unifier of s1E2. Since s′

2 is an mgu of s1E2, it follows that s′
2 is more

general than r, and therefore r = ps′
2 for some substitution p. Hence, we have

s = rs1 = ps′
2s1, which implies that s′

2s1 is more general than s. This proves
that s′

2s1 is an mgu of E1 ∪ E2.



Now assume that s1 and s′
2 are both idempotent mgu’s. We show that s′

2s1

is idempotent. Since s′
2 is a unifier of s1E2, it follows that s′

2s1(τ) = s′
2s1(τ ′), for

each τ
?= τ ′ ∈ E2. Since s1 is idempotent, this means that s′

2s1s1(τ) = s′
2s1s1(τ ′),

and hence s′
2s1 is a unifier of s1E2. Since s′

2 is an idempotent mgu of s1E2,
it follows that s′

2s1 = s′
2s1s

′
2. We use this equation to simplify the expression

s′
2s1s

′
2s1 to s′

2s1s1, which further simplifies to s′
2s1, since s1 is idempotent. Thus,

s′
2s1s

′
2s1 = s′

2s1, implying s′
2s1 is idempotent.

6 Conclusions and Future Work

We have stated and proved a compositionality principle for syntactic unifica-
tion that allows exchanging unifier composition with term equation union. The
utility of this principle is illustrated with a brief reference to two examples: a
reformulation of the polymorphic type reconstruction algorithm of Milner, and
evaluation in Prolog.

We expect this principle to be used in other domains that rely on unifier
composition, like automated deduction and intelligent backtracking. We are cur-
rently exploring the role of this principle in intelligent backtracking in logic
programming languages.

References

1. V. Choppella, Polymorphic type reconstruction using type equations, in: G. Michael-
son, P. Trinder (Eds.), Selected Papers from the 15th International Workshop on
the Implementation of Functional Languages (IFL 2003), LNCS, Springer, 2004, (To
appear).

2. L. Damas, R. Milner, Principal type-schemes for functional languages, in: Proc. 9th
ACM Symp. on Principles of Programming Languages, 1982, pp. 207–212.

3. R. Milner, A theory of type polymorphism in programming, Journal of Computer
and System Sciences 17 (1978) 348–375.

4. B. J. McAdam, On the unification of substitutions in type inference, in: K. Ham-
mond, A. J. T. Davie, C. Clack (Eds.), International Workshop on the Implementa-
tion of Functional Languages, 1998, Vol. 1595 of Lecture Notes in Computer Science,
Springer-Verlag, 1999, pp. 139–154.

5. V. Choppella, C. T. Haynes, Source-tracking Unification, in: F. Baader (Ed.), Pro-
ceedings of 19th International Conference on Automated Deduction, CADE-19, Mi-
ami Beach, USA, no. 2741 in Lecture Notes in Artificial Intelligence, Springer, 2003,
pp. 458–472.

6. J. Lassez, M. J. Maher, K. Marriot, Unification revisited, in: J. Minker (Ed.), De-
ductive Databases and Logic Programming, Morgan Kaufmann, 1988, Ch. 15, pp.
587–625.

7. E. Eder, Properties of substitutions and unifiers, Journal of Symbolic Computation
1 (1985) 31–46.

8. A. Martelli, U. Montanari, An efficient unification algorithm, ACM Trans. Prog.
Lang. Syst. 4 (2) (1982) 258–282.


