A Tutorial on Digital Design Derivation Using
DRS *

Bhaskar Bose!, M. Esen Tuna, and Venkatesh Choppella

Derivation Systems, Inc.
5963 La Place Court, Suite 208
Carlsbad, CA 92008, USA
'bose@derivation.com

Abstract. This paper presents a tutorial on digital design derivation
using DRS. The DRS system is an integrated formal system for the de-
sign of verified hardware. The underlying approach employs a derivation
methodology in which a series of correctness preserving transformations
are applied to high-level specifications in order to synthesize hardware
descriptions. In this paper, we sketch the key steps in the derivation of
an example circuit. The example illustrates several aspects of DRS and
serves as an introduction to the derivational paradigm of synthesis.

1 Introduction

DRS (Derivational Reasoning System) is an integrated formal system for the de-
velopment and analysis of verified digital hardware systems. The system provides
design engineers with the ability to synthesize verified hardware from high-level
specifications. DRS integrates an executable specification language, a polymor-
phic type inference system and a powerful derivation engine with existing theo-
rem provers and logic synthesis tools to provide a formal framework for design.
The derivation methodology has been applied to several non-trivial designs in-
cluding a 32-bit general purpose microprocessor [1], and a fault-tolerant clock
synchronization circuit [6)].

2 Design Derivation

The primary mode of reasoning in DRS is derivation. Derivation is a form of
mathematical proof that deals with correct-by-construction reasoning [3, 4, 5.
A series of correctness preserving transformations are used to derive an im-
plementation from a specification. A key advantage of this approach is that it
obviates the need for post-factum verification. This reduces the goal of design
verification to proving the correctness of the transformations. The correctness
of the transformations is established independently when the transformation is

* Research reported herein was supported, in part, by The National Aeronautics and
Space Administration.

271

developed, rather than by the designer. The designer simply applies the transfor-
mation to a design to achieve some desired goal. In addition, derivation provides
the designer the ability to explore the design space while maintaining the rigor-
ous integrity of the specification. In this respect, while deductive (conventional
theorem prover based) verification attempts to formalize a particular design,
derivation attempts to formalize the design process.

3 Derivation of a Fibonacci Sequence Generator

DRS is an interactive formal system. This interaction provides the designer with
direct control of the design process. In this respect, the system resembles a proof-
checker in the sense that it automates the algebra needed for circuit synthesis,
but requires interactive guidance to perform a derivation. The user interacts with
the system through a series of transformation commands that is used to refine
the specification from an abstract description to a concrete implementation. In
DRS, a sequence of transformations is applied to an initial specification defining
a derivation path towards an implementation satisfying an intended set of de-
sign constraints. Design tactics and constraints imposed by the designer sketch
-a complex design space with many possible paths between specification and im-
plementation. In practice, however, the derivation path has distinct phases.
Consider the example of a Fibonacci sequence generator. The behavioral
specification is obtained from the iterative definition of the Fibonacci function

" fib(n) = g(n,1,1) where
9(z,y,z) = if %z, 2) then y else 9(dec(z), z, add(y, z)).

The specification is an abstract algorithmic description that defines the function-
ality of the circuit by specifying a sequence of operations and control decisions.
The specification describes what operations must occur, but not how they are
implemented in hardware.

The first phase in the derivation is to apply a series of transformations at the
behavioral level. A class of transformations, called behavioral transformations,
manipulate the behavioral specification. These transformations usually involve
manipulating control and architecture in a tightly integrated relation. Some
examples include transformations to achieve a desired scheduling of operations
and transformations to move operations between control and architecture. The
above specification indicates that the operations add and dec are executing in
Parallel. For the sake of the example, let us assume that our final hardware
implementation is constrained to use a single arithmetic logic unit. In this phase
the dec and add operations are serialized so that they may be combined into
a single logic unit during structural refinement later in the derivation. This
serialization (over time) is achieved by introducing an intermediate function A,
and splitting the calls to dec and add across the calls to g and A resulting in

~

9(z, v, z) = if ¥z, 2) then y else h(dec(z), y, z)
h(z,y, z) = g(z, z, add(y, z)).

272

From a suitable behavior description, DRS automatically builds an abstract
structural description, denoted by a set of recurrence equations, representing an
initial estimation of architecture:

w = reg(g, select(status, g, h, g)) status = [w, it¥(z,2)]
¢ = reg(n, select(status, z, dec(z), z)) rdy = and(equal? (w, g), it¥(z, 2))
y = reg(1, select(status,y, v, z)) ans =y

z = reg(1, select(status, z, z, add(y, z)))

where

select([s, p0], v0,v1,v2) = case s
g : if p0 then v0 else vl
h:v2

The block diagram denoting the initial structural description is shown in Fig-
ure 1. (- denotes the select function. For clarity only the inputs to the selector
are shown, and the status signal is omitted. 1J represents a register unit.)

AN
€/

F

Fig. 1. Initial Structural Description

The structural description defines the components in a circuit and their con-
nectivity. The specification expresses logical behavior and physical organization,
but does not address electrical characteristics of the circuit. Timing is coordi-
nated by storage elements whose behavior in turn is governed by an external
synchronizing clock. Each variable now denotes an infinite sequence of values
over time. reg(v, S) denotes the sequence of values < v, 5%, S%,... > where the
“reg” function introduces a delay and is interpreted as a register. The construc-
tion guarantees that given a particular sequence of input events, the structural

273

description produces the same output-event sequence as does the original be-
havior specification.

The second phase in the derivation is to refine the structural description
to an architecture. A class of transformations, called structural transformations,
decomposes the description into a system of modules encapsulating signals as co-
processes, isolating components of the specification for verification, mapping to
existing hardware components, or further algebraic refinement. In the example,
the architecture is refined by subsuming the dec and add operations by a single
- component. The transformation is valid since these two operations do not occur
simultaneously, as imposed by the earlier serialization of these two operations.
The results of factoring dec and add are the synthesis of an abstract component,

alu(inst, op_a, op_b) = case inst
nop: ?
dec : dec(op-a)
add : add(op_a, op-b)

and the derivation of four equations for the signals alu_out, inst, op_a, and op_b
to communicate with the factored component. The ? symbol denotes a don’t care
value. The original occurrences of add and dec are replaced with the output of
the factored component. The resulting system of equations is

w = reg(g, select(status, g, h, g)) status = tuple(w, lit?(z, 2))

z = reg(n, select(status, z,alu_out,z)) op.a = select(status, ?, :z:,)

y = reg(1, select(status, y, y, z)) op-b = select(status, ?,?, z)

z = reg(1, select(status, z, z, alu_out)) inst = select(status, nop, dec, add)
rdy = and(equal?(w, g), It?(z, 2)) alu_out = alu(inst, op_a, op_b)
ans = y.

The third phase of the derivation is to introduce a lower-level representa-
tion. A class of transformations, called projection transformations, introduces a
lower-level representation. In the example, the architecture is still abstract in
the sense that signals represent integer values. To obtain a concrete binary de-
scription, these signals are instantiated with bit-vectors of appropriate width.
Type declarations are used to project each variable, constant, and operator to a
binary representation. For instance, the projection of

y = reg(1, select(status, y,y, z))

to a binary representation of three bits is rewritten as

Yo = reg(T, select(status, yo, yo, z0))
Y1 = reg(F, select(status, y1,y1,21))
y2 = reg(F, select(status, ya, y3, 22)).

The constant 1 and signal z are also projected to their respective equivalent bit
representations. At this stage the entire design is at the binary level. Subsequent

274

transformations impose a logical and physical ordering on the design to map
to a particular target technology. Algebraic transformations provide a powerful
approach since the massive restructuring and decomposition necessary in reor-
ganizing the design represent purely syntactical manipulations. Ultimately, this
formal development produces a hierarchy of boolean subsystems, which are then
partitioned into synthesizable subsystems. These boolean subsystems are then
passed to logic synthesis tools to generate hardware realizations.

4 Conclusion

The DRS system is based on the philosophy that design is a reasoning pro-
cess that involves analysis, deduction and generation. Although, derivation is
the primary mode of proof in DRS, the system integrates with existing verifi-
cation systems at several levels. In DRS, verification is necessary to establish
the correctness of the specification and representations. In addition, design opti-
mizations that are more easily handled using either mechanical theorem proving
techniques or model checking are employed throughout the derivation. For ex-
ample, suppose we wanted to substitute the derived alu specification with an
efficient technology dependent implementation. Fully automatic OBDD [2] ver-
ification techniques would be sufficient to establish the equivalence between the
derived alu and its optimized implementation.

The idealized design environment consists of multiple formal systems with
secure interaction between them. Proofs in one system are interpreted as valid
in another, eliminating the need to re-validate proofs across system boundaries.
With this approach the designer is able to employ the most effective tdol for a
particular design context without sacrificing confidence in the correctness of the
design.

References

1. Bhaskar Bose. DDD-FM9001: Derivation of a Verified Microprocessor. PhD thesis,
Indiana University, December 1994,

2. Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.
In IEEE Transactions on Computers, volume C-35, pages 677-691, August 1986.

3. R. Burstall and J. Darlington. A transformation system for developing recursive
programs. Journal of the ACM, 24:44-67, 1977.

4. Steven D. Johnson. Synthesis of Digital Designs from Recursion Equations. The
MIT Press, Cambridge, 1984.

5. Steven D. Johnson. Manipulating logical organization with system factorizations.
In M. Leeser and G. Brown, editors, Hardware Specification, Verification and Sythe-
sis: Mathematical Aspects, Lecture Notes in Computer Science, volume 408, pages
260-281. Springer, Berlin, 1989.

6. Paul S. Miner, Shyamsundar Pullela, and Steven D. Johnson. Interaction of formal
design systems in the development of a fault-tolerant clock synchronigation circuit.
In 13th Symp. on Reliable Distributed Systems, October 1994.

