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Abstract

This paper shows that the radix model is not reasonable for solving the Matrix Chain Or-
dering Problem. In particular, to have an n-matrix instance of this problem with an optimal
parenthesization of depth ©(n) in the worst case requires the matrix dimensions to be exponen-
tial in n. Considering bit complexity, a worst case lower bound of Q(n?) is given. This worst case
lower bound is parameterized and, depending on the optimal product tree depth, it goes from
Q(n?) down to (nlgn). Also, this paper gives an Q(nlgn) work lower bound for the Matrix
Chain Ordering Problem for a class of algorithms on the atomic comparison model with unit
cost comparisons. This lower bound, to the authors’ knowledge, captures all known algorithms
for solving the Matrix Chain Ordering Problem, but does not consider bit operations. Finally,
a trade-off is given between the bit complexity lower bound and the atomic comparison based
lower bound. This trade-off basically shows that hard instances for the comparison based model
are easy instances for the bit complexity model and vice versa.

1 Introduction

The matriz chain ordering problem (MCOP) is to find the cheapest way to multiply a chain of n
matrices, where the matrices are pairwise compatible but of varying dimensions [11]. There has
been significant research on the MCOP, take for example [6, 7, 8, 10, 12, 13, 15, 16, 18, 20, 21, 24,
25, 26, 27, 28, 29, 31]. The MCOP is also the focus of much pedagogy because of its amenability
to an elementary dynamic programming solution. The dynamic programming paradigm is based
on the principle of optimality. This principle is: for a structure to be optimal all of its well-formed
substructures must also be optimal.

At first glance, it seems possible that an algorithm on the fixed radix based model might be
faster than the present algorithms for the MCOP. This paper dashes hopes of using algorithms
on a fixed or logarithmic radix model to tackle the MCOP in full generality. But, considering
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instances of the MCOP limited to those that can be represented in a fixed radix model, Hu and
Shing’s algorithm for the MCOP [20, 21] is asymptotically optimal.

A naive information-theoretic lower bound fails: solving the MCOP distinguishes one of a
Catalan number of possible valid parenthesizations. It is well known that the nth Catalan number,
to within a polynomial factor, is ©(4™), and this is the number of ways to parenthesize n items. This
gives a O(n) information-theoretic lower bound. All algorithms for the MCOP and their analyses
explicitly or implicitly assume that an n-matrix instance of the MCOP can have an optimal solution
that is any of the Catalan number of parenthesizations. These assumptions are made without any
other considerations, for example see the references above. This paper shows that to have an
instance of the MCOP with an optimal parenthesization of depth ®(n) in the worst case requires
the matrix dimensions to be exponential in n. That is, to generate certain solutions for the MCOP,
we must have very expensive inputs. Therefore, if we want to have all parenthesizations as possible
solutions to the MCOP, then efficiency is of extreme importance.

Further, on the atomic comparison based model an Q(nlgn) lower bound is also given that
assumes that the matrix product costs are atomic. That is, the matrix product costs can only be
compared with each other and every comparison is of constant cost.

To the authors’ knowledge there were no lower bounds for the MCOP better than Q(n) prior
to this paper. This paper assumes all matrix dimensions are distinct and takes all logarithms as
base 2.

1.1 Main Results of this Paper

First, this paper shows that instances of the MCOP that have specific optimal parenthesizations of
depth ©(n) require the matrix dimensions to be exponential in n. This gives an Q(n?) lower bound
considering bit operations.

Next, without considering bit complexity, is an (nlgn) work lower bound for the matrix chain
ordering problem. To the authors’ knowledge, the class of problems that this lower bound applies
to includes all presently known algorithms for solving the MCOP. This lower bound shows that
Hu and Shing’s O(nlgn) algorithm [19, 20, 21] is asymptotically optimal and Ramanan’s parallel
algorithm [26, 27] is an O(lg®n) factor from optimal. In addition, Bradford, Rawlins and Shannon’s
parallel algorithm [7, 8] is an O(lgn) factor from optimal and would be asymptotically optimal if
an asymptotically optimal O(lgn) time parallel algorithm for computing row minima on totally
monotone matrices is found [1, 3, 2].

Finally, this paper gives a trade-off between the bit complexity lower bound and the atomic
comparison based lower bound. This trade-off is essentially based on the optimal product tree
depth. It shows that hard instances of the comparison based model are easy instances for the bit
complexity model and vice versa.

1.2 Previous Results

Prior to this paper algorithms and their analyses didn’t account for bit operations for solving the
MCOP. However, finding lower bounds for the MCOP has been the focus of some research.

A. C.-C. Yao’s work on decision trees has played an important role in the development of good
lower bounds for a variety of problems. Building on Yao’s work, Ramanan gives tight lower bounds
to problems related to the matrix chain ordering problem in [24]. In addition, in [25], Ramanan
shows these techniques give a lower bound such that,



“If we could extend our lower bound technique to bounded degree algebraic decision
trees, we would have a tight Q(nlgn) lower bound for the [MCOP].”

Ramanan’s lower bound techniques work on problems that seem to be close relatives of the matrix
chain ordering problem, although they have never clinched an Q(nlgn) lower bound for it.

1.3 Structure of this Paper

Section 2 gives a class of instances of the MCOP whose optimal product trees are of depth O(n)
and these instances must have matrix dimensions exponential in n. Section 3 shows that there are
instances of the MCOP that require Q(nlgn) work on the comparison based model assuming atomic
product costs among matrices. This model appears to include all presently known algorithms for

the MCOP.

2 Arbitrary Instances of the Matrix Chain Ordering Problem

This section shows there are instances of the MCOP that must have matrix dimensions exponential
in n. Subsection 2.1 gives an algorithm for generating instances of the MCOP that have optimal
alternating products. This algorithm is shown to generate such instances with exponentially large
dimensions. Subsections 2.2, 2.3, 2.4, and 2.5 give a class of instances of the MCOP with dimensions
asymptotically as large as those generated by the algorithm of Subsection 2.1. Subsection 2.6
generalizes the class of hard instances of the MCOP given in Subsections 2.2, 2.3, and 2.4.

An associative product of the form

((--(((My o M) 0 Mz)e My)---) e My)
is called a linear product and an associative product of the form:
(Myo((Myo((Mze---0M, 3)e M, 5))e M, 1)) e M,
is called an alternating product. Products of the form,
(((My 0 Mz)e (Mse My))e ((Mse Mg)e (M7e Mg)))

are called full balanced trees since their binary tree representation is a balanced full tree.

The depth of a parenthesization is the depth of the tree representing the associative product.
The tree of a (trivial) one matrix associative product has depth 1. The depth of a linear product
and an alternating product of n matrices is ®(n) and the depth of a balanced full tree product is
O(lgn).

An instance of the MCOP can be any list of n + 1 integers. This paper follows the standard
assumption that every possible parenthesization is the solution of some instance of the MCOP.

2.1 Generating Instances of the MCOP

This subsection gives an algorithm for generating special instances of the MCOP. This algorithm
is shown to produce instances of the MCOP with exponential dimensions in n.

Given an instance of the MCOP we will look at the corresponding problem of finding an optimal
triangulation of a convex polygon with integer vertices.



Theorem 1 (Deimel and Lampe [14]; Hu and Shing [20]) Determining the optimal order to
multiply » matrices can be done by finding an optimal triangulation of a corresponding (n 4 1)-gon.

See also [11].

Any chain of n pairwise compatible matrices My, M, -, M,, has n + 1 dimensions which we
write as dy,ds, - -,dny1. Matrix M; is of dimension d; X d;;; and this paper takes the cost of
multiplying a d; X d; matrix by a d; X di matrix as d;d;dg. Following the correspondence given by
Theorem 11, the matrix dimensions are mapped to polygon weights, and the polygon weights are
labeled by their relative size. In an (n + 1)-gon, the ¢th largest weight is w;, so overall the smallest
weight is w; and the largest weight is wy, 1.

Given an instance of the MCOP, the corresponding (n + 1)-gon is made by putting the dimen-
sions, in their given order, above the z-axis at a height corresponding to their size, and placing
equal length edges between d; and d(; mod (n+1))+1, for 7 such that n + 1> 4> 1, see [11, 20]. (To
aviod intersecting lines, some geometric manipulation may have to be done.) Now the dimensions
are renumbered as described above and they are called polygon weights which are written as ws. By
Theorem 1, finding an optimal triangulation of this (n + 1)-gon solves the corresponding instance
of the MCOP, where a triangle of the three vertices w;, w;, and wy is taken to cost w;w;wy.

Theorem 1 also leads directly to a simple parallel lower bound for the MCOP directly from
Berkman et al.’s parallel processor lower bound for triangulating a monotone polygon [5]. That
is, the parallel approximation algorithms of Czumaj [12] and Bradford [6] cannot run faster than
Q(lglgn) time using O(nlg®n) processors on the CRCW PRAM for ¢ a constant where ¢ > 0.
Berkman et al. show that finding any triangulation of a monotone polygon can’t be done faster
than Q(lglg n) using O(nlg®n) processors. This lower bound follows because these approximation
algorithms give a triangulation of a monotone polygon.

For the next theorem we briefly go back and talk about matrix dimensions directly. Let d;,d;41,
and d;;, be three adjacent matrix dimensions in an instance of the MCOP where d; < d;;+; and
dit1 > dit2, in addition, let d, = 151%1;1“{ d; }.

Theorem 2 (Chin [10]; and Hu and Shing [18, 17]) If
dididiyo + didip1dires < dididipr + didigadigo
then the product (M; e M;.1) is in an optimal parenthesization.

A proof of this theorem is left to the literature, see [10] and [18, 17] for different proofs. The basic
intuition is that since d, is the smallest matrix dimension, then replacing d, with any larger matrix
dimension will not change the inequality of Theorem 2.

Theorem 2 leads directly to sequential and parallel approximation algorithms for solving the
MCOP to within 15.5 % of optimal [10, 18, 12, 6].

Given only a sequence of integers representing the depth of parentheses in an associative prod-
uct (for example see the bottom row in Figure 1), then using a stack, for each parenthesis we
can compute its matching parenthesis (see the top row in Figure 1). That is, we can compute
the parenthesization of this associative product by solving the following all nearest smaller value
(ANSV) problem [4, 5]: Given wq,ws,...,Ws+1 drawn from a totally ordered set, for each w; find
the largest 7, where 1 < 7 < ¢, and smallest £ where 1 < k < n, so that w; < w; and wy < w; if
such values exist.
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Figure 1: Parentheses and their Depths

Suppose w; has the two nearest smaller values, w; and wg, where 2 < j7 < k. Then as in [4, 5]
call w; and wg, a match and denote each match by a pair [w;, wg]. The basic intuition behind solving
the MCOP problem by applying the ANSV problem is to let matrix dimensions approximate the
depth of parentheses [6].

Figure 2: The Contour of an (n 4 1)-gon Corresponding to an 8-Modal Instance of the MCOP

A multi-modal instance of the MCOP has a corresponding instance of the (n + 1)-gon trian-
gulation problem that has a weight list that forms several “bumps.” For example, the depths of
the parentheses in Figure 1 have two bumps. The contour of an (n + 1)-gon corresponding to an
8-modal instance of the MCOP is given in Figure 2.

Figure 3: Computing a New Matrix Dimension w; Given wq, w;, and wy,

Suppose in solving the ANSV problem the weight w; has the match [w;, wg]. Then, considering
polygons the statement of Theorem 2 generalizes to:



if wywwg + wywjwg < wiw;wg + wiww; (1)

and products (M;e---e M;_;) and (M;e---e My_;) are both in an optimal parenthesization, then
the product (M;e---e M;_1)e(M;e---e My 1) is also in an optimal parenthesization.

Therefore, starting with w, and two other weights w; and wy where w; < w; and wy; < wg from
which we want to compute a new matrix dimension w; where w; > w; and w; > wy (see Figure 3),
then we can solve inequality (1) for some w;. In particular, solving for the least integer w; that is
guaranteed to satisfy inequality (1) gives w; as,

[ W1 W; Wk -‘ 2)

W1W; + W1 W — W Wk

If expression (2) is zero or less, then there is no possible triangulation we can construct that
satisfies inequality (1), so choosing such a w; will be of no use. In addition, if expression (2) is
indeterminate, then inequality (1) does not hold.

Alternating-Monotone-Polygon(w; ){
k<« 2; 1« 3;
wg «— 1+ ws;
w; «— 1+ wg;
polygon « {wq, w;, wg};
P1 & W1WW;
P2 — wi(w; + wg) — W;wk;
while (p; > 0) {
y « Ceiling(p:1/p2);
Wh < W4,
k 1
w; <— Y
1—1+1;
polygon « Concatenate(y, polygon);
P1 < W1W;W;
P2 — wi(w; + wg) — wiwg;
}

return(polygon);

Figure 4: An Algorithm for Generating MCOP Instances with Optimal Alternating Products

Several important things should be noted about recursively generating new w; values. For
example start with some w;, next assign wy = w; + 1 and w; = wg + 1, finally generating w; as
above. Next, using the three weights w1, w;, wy try to generate the next higher weight and place
it appropriately on the list of polygon nodes. Generating weights in this fashion and appropriately
alternating them from side to side gives a simple monotone polygon [23]. Taking particular care to
put the odd numbered weights on the left side of the polygon and the even numbered weights on
the right side of the polygon gives an alternating monotone polygon, also see [18].



The algorithm in Figure 4 seems to be due to Chin or Hu and Shing, but to our knowledge
it was never published’. The algorithm in Figure 4 is invoked with some w; > 2. Modifying the
concatenation function (concatenating on the front of the list polygon, on the back, etc.) in this
algorithm allows the generation of a variety of different polygons.

In the algorithm in Figure 4, eventually, wyw; + wiywgr — w;wg becomes negative and re-
mains negative for all larger values of w; and wyg. Therefore, this algorithm will eventually
stop. In addition, assuming wi(w; + wg) > w;we gives (w; + wg) > (w;wg)/w; which im-
plies 2max{ w;,wr } > (w;wg)/w1. Now, without loss, assuming w; > wg, which means
2wy > wg = min{ w;, wg }, therefore we can choose any w; larger than or equal to expression (2)
to satisfy inequality (1). But, choosing a very large w; will backfire since after one more iteration
of the algorithm in Figure 4, w; is assigned w; and wy is assigned w; so w; > 2wy and wi > 2w,
which makes inequality (1) fail, thus stopping the algorithm.

Lemma 1 To ensure local optimality, for all weights in any monotone alternating (n + 1)-gon it must
be that, w11 — w; > w; — w;_1.

Proof: Given any four weights that form a quadrilateral in an optimal alternating product, say
w1, we, w3 and wy, then the following must hold to have local optimality:

wiwa(wy + w3) > waws(wy + wa)
= wawa(w — wa) > wrwa(wz — wa)

= wawa(wz — w1) < wywa(ws — w3)

and since, wzwy > wiwg it must be that wy — w3z > wy — wy. Now, the lemma follows by induction.
O

Simple examination of the proof of the last lemma and noting that ws — w; > 1 implies
wyq — w3 > 2 holds for local optimality in any monotone alternating (n + 1)-gon. If any monotone
alternating (n + 1)-gon is optimal, then it always must be locally optimal. This is the principle of
optimality.

By modifying the algorithm in Figure 4 it turns out that locally optimal (n + 1)-gons can be
generated with their weights growing at most linearly.

Corollary 1 Given a locally optimal (n + 1)-gon, then it must be that wy — w3 > 2.

The last lemma and corollary hold in general, but let’s go back to the details of the algorithm
in Figure 4.

Now, the question arises as to how many alternating vertices this algorithm can generate before
it is forced to stop. The next answer to this question also gives a lower bound on the size of the
vertex weights this algorithm generates. With the algorithm in Figure 4 in mind, take the following
inequality again,

w; > [ W1 W; Wk -‘ (3)

W1W; + W1 WE — W;Wk

!See the appendix for a Scheme program implementing this algorithm.



If w; > 2wy and wg > 2w;, then the denominator of inequality (3) becomes negative, therefore
no new value w; that has a positive contribution to a polygon can be generated. In addition,
without loss say w; > wyg, which gives

W W; Wk > W1 W; W
WLW; + W WE — W;W 2uiw; — W Wy
W1Wg
2wy — wg

and 2wy > wg > wi, therefore, since we are generating a bound for w; we bound the ratio w;/wyg
below by

W) We
2'w1 —Wp _ wl
Wy 2w — wy

= ck

Since wy > 2w; — wg we know that ¢x > 1 and this means w;/wg > cg. That is, w; must
be larger than or equal to wg by a multiplicative factor of c¢x. Now, following the algorithm, if
wy = wy + 1 and w3 = wy + 2, then ws is at least wz + 2 by Corollary 1. Next, computing the
minimal possible value for c3 gives:

> hd

c e —

3 = 2’(111 — (w1 + 2)
N wr, — 2

and by the definition of c;, we know that ws > caws, which is ws > wy(w1+2)/(w; —2). Computing
a bound on ¢y gives

w1
c >
T 2wy — wi(wy + 2)/(wy — 2)
_ w1—2
N w1—6
> W
- w1—4

and c¢7 > wq/(w; — 8) by substituting (w; — 2)/(w1 — 6), for wg in the expression w;/(2w; — w).
In fact, (w1 — y)/(w1 — z) > w1 /(w1 — z + y), for w; > z > y since multiplying both sides by the
product of the denominators gives zy — y% > 0.

Therefore, we can inductively show that,

w1
cJ 2 wy — 2j_2 (4)
and since wjt1 > ¢j—1w;—1 we know that by the time we compute cpgy,7 + 1, the right side of
inequality (4) becomes negative or indeterminate. Therefore, if we want to have a product of at least
n alternating elements from the algorithm in Figure 4, then we need w; such that [lg(w;1)] +2 > n.

Or equivalently, 2 Mg(w:)]+2 > 2™ and this means 4w; > 2™ so wy > 2772,



Theorem 3 Generating an instance of the MCOP with an optimal alternating product, using the
algorithm in Figure 4, gives an instance of the MCOP that has dimensions that are exponential in n.

Directly by Theorem 2 the algorithm in Figure 4 produces a polygon that has an optimal
alternating product. There can be other alternating polygons that have weights of size less than
or equal to those given by the algorithm in Figure 4, but not by much. This is shown the next
subsections.

2.2 The Exponential Size of a Class of Inputs for the MCOP

This subsection shows that there are instances of the MCOP that must have their dimensions
exponential in n.

The notion of H-arc and V-arc, from Hu and Shing [19, 20], is central to lots of work on the
MCOP. Given four weights w;11 > w; > w;_; and w;_» which form a quadrilateral in a monotone
(n + 1)-gon, then there are two possibilities in triangulating this quadrilateral. Exactly one of the
arcs w;—w;_1 Or w;41—w;_g but not both, exist in any such triangulation of this quadrilateral.
Considering our numbering of the weights, since w;—w;_; is horizontal, it is an H-arc and similarly
because w;41—w;_5 is vertical it is a V-arc, see Figure 5.

Wi+1

Figure 5: An H-arc and a V-arc in a Monotone (n + 1)-gon

In general, take any four weights w;, w;, w,, and w; inscribing a quadrilateral in an (n+ 1)-gon.
With this, the formal definition of H-arcs and V-arcs is [19, 20],

o w,—w; is an H-arc iff min{ w;, w; } < min{ w,,w; } and max{ w,, w; } < max{ w;, w; }.
o w,—w; is a V-arc iff min{ w;, w; } > min{ w,, w; } and max{ w,, ws } > max{ w;, w; }.
This formal definition includes squares inscribable in multi-modal (n + 1)-gons.

Theorem 4 (Hu and Shing [20]) Any (n+ 1)-gon whose optimal triangulation corresponds to the
solution of an instance the MCOP is made of only H-arcs and V-arcs.

The next corollary is an immediate consequence of the last theorem.

Corollary 2 All monotone (n + 1)-gons that correspond to instances of the MCOP with optimal
alternating products have only H-arcs.



Triangles in a simple monotone (n + 1)-gon can contribute to or detract from an alternating
product. If a triangle contributes nothing and detracts nothing, then wyw;(wg + w;) — wywe(wr +
w;) = 0. In order to have as many alternating products as possible, we include the product made
up by the dimensions w;, w;, and wg. (See Hu and Shing [21, Page 233] for a similar notion.)

The contribution of a triangle with vertices w;,w;, and wg, relative to wi, such that w; =
max{ w;, w;j, Wt }, is measured by

t[1l];, = wiwjwg+ www; — (wiwwg + w;w;wg)

For a single monotone polygon, we have £k = 7 — 1 and ¢ = j — 2. The ¢[1]s are directly based on
inequality (1). In fact, the ¢[1] values are the key to the approximation algorithms for the MCOP
[10, 18, 12, 6].

Now, by inequality (1) we have,

if t[1]; < 0, then the product cost w;_sw;_yw; is a burden in the polygon p
if t[1]; > 0, then the product cost w;_pw;_iw; contributes to the polygon p

These contributions or burdens can be considered to be relative to either the triangles
wj_sw;_jw; or the H-arcs wj_1—w;_s.

In general, the contribution of the triangle with vertices w;, w;_1, and w;_,, relative to w;,,
where min{ w;, w;_1,wj_2 } > w, > w; is measured by:

is]; = wswjwj_a + wewjwj_1 — (Wewj—1Wj—2 + Wiw;_1wW;_2)

t[l]la t[1l]s t[l]e e t[1]n+1

t[2]s  t[2]e e t[2]nt1
A .. A

t[3le e t[3]n+1
A
A

tfn — 241

Figure 6: A t-table for an Alternating Monotone Instance of the MCOP

A table of all ¢ values for an instance of the MCOP is a ¢-fable. For example, Figure 6 is a
t-table for an alternating monotone (n 4 1)-gon.
The final total cost of an instance of the MCOP that has an optimal alternating product is,

n+1
Z (tz — 3)i + wiw;—z(wi—1 + w;i—2))

1=4

10
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Figure 7: Polygon Representation of Alternating and Linear Products

Next is a lemma that illustrates some key ideas behind the values of the ¢s. This lemma is
central for intuition about the t-table.
Take the monotone alternating 7-gon in Figure 7 which has the following £[1] values,

t[1]s = wrwowy + wrwsws — (W1 WaW3 + WaWaWs)
t[1]s = wiwsws + wrwaws — (W1wzws + W3WaWs)
t[l]e = wiwaws + wrwswe — (W1wWawWs + WaWsWe)

t[1]7 = wiwswr + wiwswr — (W1 WsWe + WsWeW7)

Where for appropriate ¢ and k&, the expression wyw;w; 2 is the cost of a triangle in the linear
product in Figure 7 and wW;wgwg1, is the cost of a triangle in the alternating product of the same
figure. Notice that the product costs without underlines or overlines cancel out.

This leads directly to a proof of the next lemma,

Lemma 2 Given a monotone alternating polygon P, then 2?2'41 t[1]; measures the difference between
the cost of the linear product of P and the cost of the alternating product of P.

This lemma also holds for all ¢ values in a particular range, see Figure 8. In Figure 8, suppose
0 > t[3]e+t[3]7+t[3]s+%[3]o. Then in the subpolygon between wz and wy, the optimal triangulation
is not the alternating triangulation. Hence such an entire monotone alternating (n + 1)-gon cannot
have an optimal alternating triangulation. This is due to the principle of optimality, because if
an alternating triangulation is optimal, then any alternating subtriangulation must be optimal. In
general, taking the partial prefix sum of all rows of such a t-table, if any of these partial sums are
negative, then an alternating triangulation is not optimal.

11



Corollary 3 Let P be an alternating monotone (n + 1)-gon. If 0 > Y%, #[1]; for some & such that
n+ 1 > k > 4, then the alternating triangulation of P is not optimal.

W1

W10

(3, < Wy

Figure 8: ¢[3]g in an Alternating Monotone Polygon

Lemma 3 Given an alternating monotone polygon with at least 4 weights, we have t[1]; < ¢[2]; <
s <t — 4] < ti - 3.

Proof: Take t[s]; = wswi(w;—1 + wi—2) — wi—1w;—2(ws + w;) and t[u]; = wew;(wi—1 + wi—2) —
w;_1W;_o(Wy + w;) where u > s. Taking their difference gives,

tlul; —tlsli = [wy — ws|(wiwi—1 + wiwi—g — Wi_1W4—2)

and since w; > w;_1 > w;_3 and w, > w, in our numbering of the weights in an alternating
monotone polygon, the lemma holds.
O

Lemma 3 encompasses a facet of the principle of optimality. In particular, if the local triangu-
lation measured by t[¢ — 3]; is negative, then the two triangles formed by the weights w;, w;_1, w;_a,
and w;_3 with an H-arc between w;_; and w;_, are not locally optimal.

Looking at the relationships of the ¢ values, we note that if ¢[1]; > 0 for all 7 such that n +1 >
1 > 4, then the algorithm in Figure 4 asymptotically optimally generates such monotone alternating
polygous.

Given an alternating monotone polygon, a block is any t-table that has all positive ¢ values. A
block grows at least as fast as a polygon generated by the algorithm in Figure 4 from the same w;.

12



Theorem 5 Given any w;, the algorithm in Figure 4 generates the most compact alternating triangu-
lation of a block.

Proof: As a consequence of expression (2), at each iteration the algorithm in Figure 4 includes the
least possible integer relative to w; in the polygon. In addition, initially we choose the second and
third dimensions as small as possible.

All local triangulations must be optimal, otherwise by Lemma 3 all ¢ values can’t be positive.
Specifically, if all of the t[1] values are positive, then all ¢[i] for ¢ > 1 are also positive. Also, if
for any valid ¢ and j, say t[i]; is negative, then ¢[1]; is negative. It follows by induction that the
algorithm generates the “most compact” polygon, so all ¢ values are positive.

O

The columns of a t-table corresponding to an instance of the MCOP are numbered by increasing
values starting with 4 and going up through n + 1. In some sense, the ¢th column represents the
triangle with the three vertices w;, w;_1, and w;_3. Column ¢ corresponds to w;, the zth largest
weight. It is important to notice that going from left to right in a t-table for a multi-modal
(n 4+ 1)-gon, the columns are of varying sizes. This means that column ¢ and column % + 1 may not
represent adjacent dimensions in a multi-modal matrix chain. As an example, take the multi-modal
(n + 1)-gon in Figure 9.

Figure 9: A Polygon with Two Extended Canonical Sets of Columns

Take a multi-modal instance of the MCOP with H-arcs in different “bumps.” In this case,
each “bump” must be considered separately in a t-table. This is because the key to the growth
of the size of the weights is the number of H-arcs eventually above one another. Therefore, an
extended canonical set of columns is a set of columns of a t-table that are all directly associated
with one bump of a weight list. For example, Figure 9 contains a polygon that has a t-table with
two extended canonical sets of columns. This figure assumes that each of the two bumps in the
weight list forms an optimal alternating product on its own [20].

In particular, the columns of weights wy, we, and wg form one extended canonical set and the
columns of weights ws, w7, and wg form the other set. Figure 10 gives the t-table for the bi-modal
polygon in Figure 9. It is important to note that between ¢[1]g and ¢[3]s there is no ¢ value due to
the structure of the polygon in Figure 9.
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A A A
t[2]7 t[2]o
A A

Figure 10: The t-table of the Bi-Modal Polygon of the Last Figure

Some polygons with optimal triangulations may have V-arcs interspersed with H-arcs. In such
polygons, the only possible chance that w,_;—w;_5 is an H-arc in an optimal triangulation is when
t[i—3]; > 0. Of course, if ¢[i—3]; > 0, then the H-arc w;_;—w,_ is locally optimal, but ¢[t—3]; > 0
does not indicate that the H-arc w;_1—w;_5 is in a well formed substructure of the entire optimal
triangulation. This follows directly from the principle of optimality.

For the rest of this paper, we only consider t-tables as depicted in Figure 6. That is, instead of
considering t-tables as in Figure 10 we can just consider each extended canonical set of columns in
such a t-table which is of the form as the one in Figure 6.

+++++ +

Figure 11: A t-table with Subblocks a,b and ¢

Subblocks are maximal blocks in a t-table. All subblocks are along the largest diagonal of a
t-table. Figure 11 shows three subblocks of a t-table, where blocks a and b are intersecting. The
size of a subblock is the number of rows, or equivalently the number of columns, of the subblock.

The next theorem illuminates the struggle between local and global optimality that, in some
sense, characterizes the difficulty of solving the MCOP.

Theorem 6 For all valid %, the value [¢ — 3]; must be positive in any monotone (n + 1)-gon that has
an optimal alternating product.

A proof is trivial, since if a polygon is not locally optimal, then by the principle of optimality
it cannot be globally optimal. It is important to keep in mind that Theorem 6 only holds when an
optimally triangulated monotone (n 4 1)-gon has a H-arc between w;_; and w;_3.
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Theorem 6 is tantamount to saying that all instances of monotone (n 4 1)-gons with optimal
alternating products are locally made up of blocks. This is because each ¢[¢ — 3]; value is the
contribution of a block consisting of four weights. The only two types of monotone alternating
(n + 1)-gons corresponding to alternating instances of the MCOP are blocks or blocks above one
another. Therefore, to have an optimal alternating monotone polygon we must have at least trivial
blocks down the largest diagonal. That is, an optimal alternating monotone polygon must be made
up of blocks and these blocks must “cover” the diagonal.

2.2.1 Generating Instances of the MCOP

Instances of the MCOP can be generated in a variety of ways. For instance, start by applying the
algorithm in Figure 4 to generate a list of weights | = wy,ws, -+, wWny1. Then, for some & such
that n — 1 > k > 1, remove weights w;, ws, - - -, wg and call this new list I’. The list I’ hasn+1— k&
elements. Next, run the algorithm in Figure 4 with an initial weight w, such that w, > w; and
generate a new alternating weight list " which we cut off below wg,; being sure to preserve local
optimality between the top of [" and the bottom of /. Now we can insert [” into I’ below the H-arc
between wg41 and wgyo giving a new polygon. This technique generates instances of the MCOP
that exhibit the “father-son” relationship of [21], which was used for the sequential solution of the
MCOP by Hu and Shing [20, 21]. In parallel, different methods can be applied for dealing with
these instances [7, 9].

Instances of the MCOP with some negative ¢ values can also be generated with a similar method
to the one just outlined. For instance, we can start with an (n+ 1)-gon generated by the algorithm
of Figure 4. Next, take the top weight w,; and lower it while making sure that the polygon
still has an optimal alternating product. In this case, some of the ¢ values will become negative.
Lowering w41 to much will give an (n + 1)-gon with an optimal linear product. Other weights can
also be lowered. In addition binary search can be used to find weights such that there are some
negative ¢ while an alternating product is still optimal.

Generalizing these techniques to generate multi-modal (n+ 1)-gons follows from a main theorem
of Hu and Shing. This is Theorem 11 in Subsection 2.6. Its application is straightforward, so it is
not discussed here.

2.3 Columns with Non-Negative Sums

This subsection shows that if there are Q(lg'T€n) total columns in a t-table with non-negative
sums, then the corresponding instance of the MCOP has exponentially large dimensions.

Lemma 4 Given an instance of the MCOP with an optimal alternating monotone product, if its t-table
has a subblock of size Q(lg'*€n), for € > 0, then the subproduct of the MCOP that this corresponds
to has dimensions of exponential size in n.

A proof of this lemma follows directly from Theorems 3 and 5, and Lemma 3 and the fact that for
all appropriate ¢ and j in such a subblock we have t[¢]; > 0. In addition, any such block will have
dimensions that are exponential in size, since 9cle’ Ten ig (barely) exponential for the two constants
€>0and ¢ > 0.

Consider extended canonical sets with minor adaptation of the proof of Theorem 3. That is, for
any set of columns the weights must grow exponentially to have positive ¢[1]s. Now the argument
of Lemma 4 immediately generalizes to the following theorem.
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Theorem 7 Given a monotone instance of the MCOP with an optimal alternating product, if its t-
table has Q(lg't€n) columns with all positive elements, then the subproduct of the MCOP that this
corresponds to has dimensions of exponential size in n.

In this subsection we still must address columns containing negative elements but with non-
negative sums. By Theorem 7, any optimal alternating instance of the MCOP that has Q(lg' T n)
columns of all positive elements has exponential dimensions. Therefore, we next check the case
where there are Q(lg'*¢n) columns containing non-negative sums, where these columns have some
negative elements.

Ign

Ign

Figure 12: Blocks with Columns Having Negative Values

In the following discussions assume, without loss, that i > lg!™®n, so the ith column has

Q(i — 1g' ™€ n) negative values. Otherwise there will be a subblock of size Q(lg'*¢n) of all positive
t values in the t-table, see Figure 12. Wishing to prevent subblocks of size Q(lg'™¢n), there must
be many columns close enough together that have negative values near the largest diagonal of the
t-table. The largest diagonal contains the values ¢[¢ — 3|; for all ¢ such that n+ 1 > ¢ > 4. In
particular, having a subblock of size Q(lgl'i'e n) bounded above by row k indicates that t[k —3]; > 0
for all 4, such that rlg't€n > i > k for some constants € > 0 and r > 0. (See Figure 12.)

Corollary 4 Given a monotone (n + 1)-gon that has an optimal alternating product, if starting in
the main diagonal any row does not have a negative value within Q(Ig'*¢n) columns, then the matrix
dimensions grow exponentially in n.

Otherwise, suppose the corollary does not hold. Then for some € > 0, there is a row has no negative
values within Q(Ig' ™€ n) columns from the main diagonal. Then there would be a block with weights
having exponential growth.

Next, we characterize the relationship of elements in columns by linear functions. In particular,
the values in each column are related as a linear function.

By Corollary 2, finding a monotone polygon with an optimal alternating product we only have
to consider H-arcs. Thus, from here on only consider columns in a t-table that correspond to
H-arcs. So taking any such ¢z — 3]; > 0, we know,
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wi—g(Wiwi—1 + Wiwi—2) > Wi_1Wi_aW4—3 + WWi_1Wi_2

but, without loss, assume that eventually for some d > 4 that ¢[¢ — d|; < 0 and

Wi—g(Wiw;—1 + Wiwi—2) <  Wi1Wi_aWi—d + WWi_1Wi—2

Therefore, in each column there are two constants m; and b;, for all valid z > 3, where

m; = W;W;—1 + WiW;—3 — Wi 1W;—2

b, = ww;_1w;_y

giving the equation y = m;z — b;. The equation y = m;z — b; has slope m; and it’s not hard
to see that m;41 > m; and b;41 > b;. Also, note that in general the slopes are very steep since
m; > w;w;_1. From here on, we will treat the column equations and the elements of a column as
the same.

The next relationship holds among the nodes in column 3.

mw; — b, < mpwe —b; < - < muwy_g — by < myw;_3 — b (5)

As we have just seen, each column has a different linear equation that quantifies how elements
in the column relate to each other. This is key in the subsequent developments in this section.

The intuition behind the final results in this subsection are now given for a t-table containing
only trivial blocks. Trivial blocks consist of only 1 positive ¢ value surrounded by negative ¢ values.
That is, if ¢[¢ — 3]; > 0 and ¢[¢ — 4]; < 0 and ¢z — 3];4+1 < 0, then ¢[z — 3]; is a trivial block.

Suppose, there is some (n + 1)-gon with ¢[z — 3]; > 0, ¢[ — 4], = 0 and ¢[z — 5]; < 0 for all ¢ such
that n + 1 > ¢ > 4. (We choose t[¢ — 4]; = 0 to simplify our argument.) Notice that the ¢ values
in the main diagonal of the t-table are the only elements that are contributing positively. Insisting
that the polygon at hand has an optimal alternating product and each column has a non-negative
sum leads to the following argument.

For columns with non-negative sums and only one positive element, the next relationships must
hold. Otherwise we will violate Theorem 6, hence we can’t have the desired H-arcs. (This is because
the H-arc w;_1—w;_3 can only be in an optimal monotone (n + 1)-gon if ¢[z — 3]; > 0.)

t3le > |t[1]e |
{4l > [ t2]7 + 1] |
t[5]ls > | t[3]s + t[2]s + t[1]s |
t[6lo > | t[4]o + t[3]o + t[2]o + t[1]o |
t[7li0 > | t[5lio + t[4]10 + £[3]10 + £[2]10 + £[1]10 |
t[8]l11 > | t[6]i1 + ¢[B]11 + t[4]11 + ¢[3]11 + ¢[2]11 + ¢[1]11 |
1912 > | t[T]ia + t[6]12 + [5]12 + t[4]12 + £[3]12 + £[2]12 + ¢[1]12 |

Now, considering the columns (still assuming they each have a non-negative sum) and when ¢z —
3]; > 0 we assume t[i — 4]; = 0 giving
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:>w3—w22w2—w121
(w3 — wl) = W4 — W3 > 2(’(112 —wl)
+ (w4 — wl) — W5 — W4 > 4(’!1)2 —wl)

(ws — w3) + (w5 — w2) + (ws — w1)
— Wg — Wy > 8(w2—w1)

and in general, it must be that wy; > 2°. The central assumptions here are that in each column
there is only one positive value [z — 3]; and ¢[i —4]; = 0 so we can subtract w;_sm; — b; from the left
side of the above inequalities and subtract each element on the right side of the above inequalities
from w;_4m; —b; without changing anything. This same argument also holds for extended canonical
sets of columns in a t-table.

The next lemma provides a generalization of this argument.

Lemma 5 (Columns with Non-Negative Sums) Given a monotone (n + 1)-gon that has an
optimal alternating product, if there are Q(lg'T€n) columns with non-negative sums, then the matrix
dimensions grow exponentially in n.

Proof: First, note that within every O(lg'™*n) columns there must be a column with more than
Q(i — 1g'T¢n) negative values. Otherwise, there will be exponential growth in the weights by
Lemma 4.

Next, by Theorem 6, for each 7 it must be that £[z — 3]; > 0 to have a monotone (n+ 1)-gon with
an optimal alternating triangulation. In fact, to have columns with non-negative sums, it must be
that ¢[z — 3]; > 0. Therefore, in t-table of a monotone (n + 1)-gon with an optimal alternating
product, it must be that m;w;_3 — b; > 0 for all valid z.

i—-c'lgn

o+ o+
S~

S c Ign

Figure 13: A Column with Mostly Negative Values but a Positive Sum

Now, we show that, for any constant c¢ there is some constant ¢’ such that: If within every
clg'*t®n columns the ith column has more than i — ¢’'lg't®n negative values, then the weights
don’t grow exponentially (see Figure 13).
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Consider the 7th column. Since m;w;_3 — b; > 0, without loss suppose there is some d > 4
such that m;w;,_q — b; = 0. Therefore, m;w; — b; < 0 for all 7, such that 2 —d -1 > 5 > 4 and
m;wg — b; > 0 for all k, such that 1 —3 >k >7—d+ 1.

Now, because m;w;_q — b; = 0 we can subtract it from each positive ¢ value and subtract each
negative ¢ value from its own copy of m;w;_4 — b;. Since the columns have positive sums

i—3 1—d—1
Y (miw, — b — (miwi_g — b)) > > (mawi_g — b; — (myw, — b))
s=i—d+1 s=1

must hold and this gives

2—3 1—d—1

Yo (ws—wica) > ) (wimqg — ws)
s=i—d+1 s=1
which means
y
Wi—3 — Wi—d > Z(wi—d — W)
=T

for some z and y based on the size of d. For example, if d =4, then y=¢—d—1and z = 1.

k

d++o0r

o
.
w

+ o+ +

Figure 14: The Two Columns ¢ and &

Now, we know that i —c’lgn > d > 4, for some constant ¢/, because there are less than ¢'lg!™¢n
positive values in the column and more than 7 — ¢’ 1g1+€ n negative values. Therefore, w;_3 —w;_g4 is
larger than or equal to the difference of w;_4 and more than (i — c/lg't¢n)/c'1g' ™€ n other weights
by the Pigeonhole Principle. This, with equation (5), means that

i—c'lgtten
Wi-3 — Wi—d > > (Wi-a — ws)
il lgltep | iz/lglten
s=i1—c'lg" " n [ TigiFen
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Next, we will show that

Finally, by Corollary 4 there must be a column within O(lgl‘i'E n) columns with a weight that is
at least 2(w;_3—w;_q). This is because within O(lg' ™€ n) columns there must be a ¢ value such that
t[4 — 3]x < 0 for some column & > 4 such that & < d'lg**t*n for some d’ > 0. Otherwise, by Lemma 5
there will be exponential growth in the weight size. Now, without loss, say that ¢[¢ — 3]y = 0 and
we know that is larger than

k—c'lgtten
Wp_3 — Wi_3 > Z ('w'i—B - wa) (6)

—k_cllgltepn_ | k=c/lglten
s=k—c'lg""n ’V JglFen

Now, since there are less than O(lg!™ n) positive values in column 4 and for sufficiently large &
we know that

k/lg'ten = Q(lg'ten)
indicating that

E—c'lgiten

1+4+€
k—lg n—{ Jlgt e

w > i—-3—(i—d)=d-3

so there are at least a few terms of the form (w;_3 —w;) in equation 6 where s < 1 —3—d' lgl"'E n
for some constant d' > 0, see Figure 14. In this figure, notice that the number of ¢ values “covered”
by t[k — 3]k is larger than the number of ¢ values “covered” by t¢[i — 3];. That is, the difference
w;_3 — w;_q marked by a is asymptotically not as large as the difference w;_3 — w, for lots of w,s
marked by b.

This argument continues inductively, increasing the weights by powers of 2 at each such column.
Also, it holds for columns with non-negative sums that have fewer positive values than O(lgn).
This argument even holds in the case where progressive columns having non-negative sums have
varying numbers of positive ¢ values.

O

This lemma immediately generalizes to the case of a single extended canonical set of columns
of a multi-modal (n + 1)-gon. If there are columns with negative values (but non-negative sums)
every O(lgl‘i'€ n) columns or less, then the weights grow exponentially. This is because by Lemma 5,
we will double the values of the weights at least every O(lg't€n) columns, giving an exponential
increase in the size of the weights.

2.4 Columns with Negative Sums

This subsection plays columns with negative sums off of the sums of the rows of a t-table. In other
words, if a t-table has many columns with negative sums, then some row must have a negative sum
indicating that we can’t have an optimal alternating instance of the MCOP by Corollary 3.

The last subsection showed that if any instance of the MCOP with an optimal alternating
product has Q(lg**€n) columns in its t-table with non-negative sums, for € > 0, then it will have
exponential growth in its dimensions. This means, the only remaining way to have an instance
of the MCOP with an optimal alternating product that does not have exponential growth in its
dimensions is to have Q(n — lg! ™€ n) columns with negative sums. This subsection shows that if a
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t-table has Q(n —1g' ™€ n) columns with negative sums, then either the top row of this t-table has a
negative sum, or the weights grow exponentially. By Corollary 3, if the top row of a t-table has a
negative sum, then the corresponding instance of the MCOP does not have an optimal alternating
product.

The next theorem is elementary.

Theorem 8 If the sum of all the ¢ values in a column of the t-table is negative, then the column has
more negative ¢ values than positive ¢ values.

A proof of this theorem follows from Lemma 1. Theorem 8 implies that if the ¢th column has a
negative sum, then ¢[|2/2]]; < 0.

Columns in the t-table and the lines representing the relationship of their elements are treated
identically.

Linei

]+ ({8

Figure 15: Lines % and ¢ + 1 have ¢[1]; > 0 > ¢[1];+1 and 0 > ¢[1]; + ¢[1];41

Assume column z has all positive values and suppose column % + 1 has a negative sum, see
Figure 15. Then by Theorem 8, it must be that 0 > ¢[|(¢+ 1)/2]];+1. Also, it must be that
0 > t[1];+1 since column ¢+ 1 has a negative sum. This means, if ¢[1]; + ¢[1]i+1 < ¢[| (¢ + 1)/2]]it1,
then £[1]; + ¢[1];+1 < 0. Therefore, in terms of the sum along the top row (of the corresponding
t-table) that must be maintained to have an optimal alternating product, by Corollary 3, column
i+ 1’s negative ¢[1] value cancels out any gain by column #’s positive ¢[1] value. Recalling that the
only chance of having subexponential growth of the weights is, if there are at least Q(n —lg' ™€ n)
columns with negative sums.
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The intuition behind the next lemma is the following. Assume most columns have negative sums,
then to maintain a positive sum in the top row of the t-table, we must show that the magnitude of
the columns with positive [1]s are larger than their (many) negative counterparts. But, for each
column with a positive ¢[1], there are

()
lgiten

columns with negative sums, for some € > 0. The next lemma shows that if Q(n/lg'T¢n) columns
with negative sums don’t “cancel out” one positive ¢[1], then the weights grow exponentially. In
fact, the next lemma proves that this even holds for only Q(lg'*€n) such negative columns.

Lemma 6 Suppose the t-table of a monotone (n + 1)-gon with an optimal alternating triangulation is
such that ¢[1]; > 0 > #[1], for i < k. If there are Q(Ig* T n) columns k, where t[|k/2]|]x < t[1]; +t[1]%,
then the weights grow exponentially.

Proof: Starting with 0 > ¢[s]x — (¢[1]; + ¢[1]x) for & > 7 and let s = [(k+ 1)/2] giving
0> (ws —w1) [we(wk—1 + wr—2)] + (w1 — ws) [Wk—1Wk—2] — wrw;—1(w; — wi—2) + ww;_2(w;—1 —w1)
which is

We(We_—1 + WE_9) — Wp_1Wk_
) k(Wk—1 k—2) — Wh—1Wk—2 t (wig — wr)
WL W;-1 W1W; -1

W;Ww;—2

w; — Wi—g > (ws —wy

giving w; — w;—a > ¢(w;—1 — wy) for some constant ¢ > 1.
O

Suppose the conditions of Lemma 6 don’t hold. In particular, say ¢[|(¢ 4+ 1)/2]];41 > t[1]; +
t[1];+1 and without loss say 0 > ¢[[(¢+ 1)/2]]i+1. Then we know that 0 > ¢[1]; + ¢[1];41. Now,
since 0 > ¢[1]; + ¢[1];4+1, this forces the top row to have a negative sum because we must have
Q(n —1g't¢n) such columns. Therefore, by Corollary 3 if the top row has a negative sum, then we
can’t have an optimal alternating product.

The results of this subsection give the next theorem.

Theorem 9 Given a t-table with Q(n — lg'™€n) columns with negative sums, then either there is
exponential growth in the size of the weights or the corresponding instance of the MCOP does not have
an optimal alternating monotone product.

2.5 The Exponential Nature of the MCOP
A proof of the next theorem follows from the results in the previous subsections.

Theorem 10 Any instance of the MCOP that has an optimal alternating product of n elements has
matrix dimensions exponential in n.

The results of this section also apply to extended canonical weight lists. These results even
apply to blocks in unimodal (n+ 1)-gons that are interspersed with optimal V-arcs. In this case, the
exponential growth of weights is directly related to the number of H-arcs in an optimal triangulation
from the top of such a bump down, see Figure 16.
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2.6 Arbitrary Instances of the MCOP and the Lower Bounds

This subsection generalizes the results of the last subsection giving larger classes of costly instances
of the MCOP.

Directly by the work of Hu and Shing [18, 20, 21|, it is easy to see that for any possible
parenthesization © of n elements, there is an instance of the MCOP that has # as an optimal
parenthesization. In particular, consider the following theorem.

Theorem 11 (Hu and Shing [20]) Given a matrix dimension list wy,...,wny1 with the three
smallest dimensions w; < wy < ws, then the products wywy and wyws are in some associative prod-
uct(s) in an optimal parenthesization.

Notice that Theorem 11 relies only on the position of the three smallest weights and their
relative size. This theorem is useful as a divide-and-conquer tool for building balanced full tree
instances of the MCOP.

The next corollary follows from Theorems 10 and 11. In particular, columns in the same
extended canonical set of a t-table only force exponential growth when H-arcs are above one another
(possibly interspersed with optimal V-arcs) in an optimal product. The next corollary is immediate
considering the size of the inputs. And it turns out that the argument in Subsection 2.2 can
be mimicked to get an exponential upper bound on the size of the matrix dimensions using the
algorithm of Figure 4.

Corollary 5 In the worst case solving the MCOP takes Q(n?) bit operations.

Corollary 5 is asymptotically tight since in [20, 21] Hu and Shing give an algorithm for solving
the monotone (n + 1)-gon triangulation problem in O(n) atomic operations. In addition, just to
verify that an (n + 1)-gon is monotone costs O(n).

The corresponding (n 4+ 1)-gon of any instance of a balanced full tree of the MCOP is only
O(lgn) H-arcs deep anywhere, see Figure 16. Taking this argument further to a fixed radix model,
Hu and Shing’s algorithm is asymptotically optimal.

By the proof of Theorem 3 we see that if there are only O(lgn) H-arcs, then the lower bound
on the size of the matrix dimensions is 0(20(15”)), which is polynomial. We can use the algorithm
in Figure 4 along with Theorem 11 to generate such instances. This means that n matrix instances
of the MCOP that have optimal product trees of depth O(lgn) can have dimensions representable
by O(lgn) bits each.

Taking into account Theorem 11 and then applying Theorem 10 to product trees of depth
O(lgn) gives the following corollary.

Corollary 6 In the worst case just to read in any instance of the MCOP with an optimal product tree
of depth ©(lgn) requires Q(nlgn) bit operations.

This corollary is the other end of the parameterized worst case lower bound. In particular, the
depth of the number of desired H-arcs in an optimal product determine the size of the dimensions,
hence the bit complexity of instances of the MCOP.

In the next section, lower bounds are given on the atomic comparison model that can be
contrasted with the results of this section.
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Figure 16: H-arcs in a Balanced Full Tree Instance of the MCOP

3 An Q(nlgn) Lower Bound on the Comparison Based Model

This section focuses on the comparison model where each comparison is of constant cost and all of
the product costs are atomic. This section begins with a general tree evaluation problem, of which
the MCOP is a special case. Subsection 3.1 starts with an algebraic model and Subsection 3.2
completes the results given here.

The general tree evaluation problem has an (nlgn) work lower bound. To the authors’ knowl-
edge, all algorithms that solve the MCOP also solve this general tree evaluation problem.

The lower bound of this section has its worst case for instances of the MCOP whose solution
may be balanced full binary tree products. In contrast, the lower bound of the last section has its
worst case for instances of the MCOP whose solution is an alternating product.

3.1 An Algebraic Model

A (finite) semigroupoid (S, R,e) is a nonempty finite set S, a binary relation R C |S| x |S| and
there is a bijection from |S| to the elements in S. There is an associative binary operator “e” on

R satisfying the following conditions [22]:

1. If (a,b) € R,thenaeb € S.
2. (aeb,c)c Riff (a,bec)c Rand (aeb)ec=ae(bec).
3. If (a,b) € R and (b,c) € R, then (aeb,c) € R.

A weighted semigroupoid (S, R,e,pc) is a semigroupoid (S, R, ) with a non-negative product
cost function pc such that if (¢, k) € R, then pc(a;, ax) is the cost of evaluating a; e ag.

An associative product is any product of the form a; e az e - -- o a,, such that (¢, + 1) € R, for
1 <4 < n. The minimal cost of evaluating an associative product a; ® a;;1 ® - - - ® a; is denoted by
sp(%, k). The minimal cost of an associative product can be computed as,
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splis k) = min, { 596, 5)+ 393 + 1K) + (5,5, K) } (7)

where f(%,7,k) = pc(a;®a;,410---0a;, aji10a;1z0---0ap)and sp(i,7) = g(¢) where g(¢) is some
function of z.

Given a weighted semigroupoid and an associative product a; eaye- - -ea, the problem of finding
sp(1, n) is the minimum parenthesization problem on a weighted semigroupoid. This problem models
many problems that are often solved using dynamic programming.

3.2 A Model for the MCOP

This subsection follows [6, 7, 9] very closely. Here a graph problem is given that can model
many problems which have dynamic programming solutions. In fact, recurrence (7) can be solved
by finding a shortest path on such a graph. Although this graph structure has been used as a
framework for solving the MCOP, it can also be used for developing lower bounds.

Let T be an n X n dynamic programming table for finding an optimal associative product via
recurrence (7). Element 7'[¢, k] represents the cheapest cost of generating the associative product
a; ® --- e ap. That is, for the MCOP, T'[z, k| represents the cheapest cost of the matrix product
M;e---e M. In general, for any such T there is a graph D,, where the cost of a shortest path to
node (%, k), denoted sp(¢, k), is the same as the final value of T'[z, k.

T

) (12) 13 14)
/:\
i 22 23) 24)
]
| (33) ——>(34)
o 7

00) > (44)

Figure 17: The Weighted Graph D4

Given an associative product with n elements and an appropriately built D,, graph, finding a
shortest path from (0,0) to (1,n) gives an optimal associative product. Finding this shortest path
is tantamount to solving recurrence (7). Therefore, starting with a chain of n matrices, finding a
shortest path from (0,0) to (1,n) in D, solves the MCOP [6].

D,, has vertices in the set, { (¢,7):1<i<7<n }U{(0,0)} and edges,

{(G)—-0Gi+1):1<i<j<n} U {(5)1(GE-1,5):1<:1<j<n}
U {(0,0) 7 (z,2):1<i<n}
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known as unit edges, together with the edges,
{(#)=0t):1<i<j<t<n}U{(s;t)N(¢,8):1<i<s<t<n}

known as jumpers, see the jumper from (1,2) to (1,4) in Figure 17. The unit edge (¢,7) — (¢,7+1)
represents the product (a;e- - -ea;)ea; ;1 and weighs f(¢,7,7+1). For the MCOP, (a;e- - -0a;)ea; 1 =
(M;o---oM;)e M;\q and f(i,7,7+ 1) = w;wjt1wjq2, which is taken as the cost of multiplying a
w; X wjp1 matrix and a wjyq X wjte matrix. Similarly, the unit edge (¢,7) T (¢ — 1, ) represents
the product M;_, e (M; e ---e M;) and costs f(z — 1,4 — 1,7) = w;_qw;wjt1. A shortest path
to (i,k) through the jumpers (3,7) = (¢,k) and (5 + 1,%k) 1 (¢,k) both represent the product
(a;0---0a;)e(ajise---ear) These jumpers weigh sp(7 + 1,k) + f(4,7, k) and sp(¢,7) + f(%,7, k),
respectively, where sp(7 + 1, %) is the cost of a shortest path to node (5 + 1, %) and for the MCOP
f(3,7,k) = wywjy1we41 and

(a;0---0aj;)e(ajr10---0ay)=(M;e---0M;)e(Mji10---0 M)

See Figure 17.

In D,, a critical node is (¢, k) such that [w;, wgy1] is an ANSV match. Two critical nodes on
the same diagonal are compatible if no vertices other than (0,0) can reach both of them by a unit
path. Since a path of critical nodes represents a parenthesization, all critical nodes are compatible.
Also, D, has at most n — 1 critical nodes and there is at least one path from (0,0) to (1,7n) that
includes all critical nodes [6].

All vertices and edges that can reach (7,t) by a unit path form the subgraph D(7,¢). When
D(i,7) has a monotonic weight list w;,...,w;y1, then D(¢,7) is monotonic. A band canoni-
cal subgraph DE;-’,Z)) is the subgraph containing the maximal unit-edge-connected path of critical
nodes beginning at critical node (7, %) and terminating at critical node (¢,t) with the vertex set

{V[D(,t)]-V[D(j+1,k—1)] }U{(0,0) } and associated edges. A canonical subgraph of the

form D(;':;+1)’ is a leaf canonical subgraph and is written D) Tt has the same nodes and edges
as D(%,t). It turns out that these bands and leaf subgraphs together form trees [20, 21, 6].

Figure 18 shows a weight list and its subgraphs in D,. The dashed lines represent four key
ANSV matches and the four corresponding critical nodes are circled in D,,. Notice the tree structure
that canonical graphs form in Figure 18.

A proof of the next theorem is straightforward examining recurrence (7).
Theorem 12 Any solution to recurrence (7) on D, forms a tree of band and leaf subgraphs in D,,.

A proof of the next theorem is immediate since there are Q(n3) “f values” to look at in a D,
graph. This is because for all 1 < i < 7 < k < n there is an f(%,7,k). For instance, an adversary
could make it so that f(z,7, k) = 1000 except for the constants a,b and c where, i =a,7=b,k=c
and f(a,b,c) = 1. In addition, any path in D,, from (0,0) to (1,n) has exactly n — 1 f values in it.

Theorem 13 Solving the minimum parenthesization problem on an arbitrary weighted semigroupoid
costs (n3).

But, fortunately the structure of the MCOP constrains the various f values. In particular, we
define the next subproblem of the minimum parenthesization problem on a weighted semigroupoid.
Replace the two last rules from the definition of a weighted semigroupoid with the following two,

26



Figure 18: Two Leaf Subgraphs Inside an Band Subgraph with Critical Nodes Shown

Cask 1: If [sp(¢,1), sp(j,7)] forms an ANSV match, then (a;,a;) € R
Cask 2: If (a;,a;) € R and (a;41,ar) € R, then let a; = a; 0 a; and a; = a;1 ® ay, giving (as,a¢) € R.

First notice that this new structure is a weighted semigroupoid still solvable by recurrence (7).
With these new restrictions, only special trees of associative products are allowed. Starting with
a weighted semigroupoid, replacing the last two rules by CASE 1 gives a problem akin to the tree
evaluation problem which can be solved in ®(n) time.

Adding Cask 1 along with CASE 2 and its recursive application gives a general problem costing
(nlgn) time to solve. This problem is a generalization of the tree evaluation problem. In particu-
lar, take the standard tree evaluation routines, and replace the binary operation by the minization
operation of recurrence (7). The number of minimums in such a generalized tree evaluation or
equivalently the number of jumpers along tree edges in D,, but not the number of jumpers in a
canonical subgraph. The number of such tree edge jumpers are asymptotically bounded by h(n)
where

h(n) < min {{(n—k)/2], [k/2]}+ h(n — k) + h(k)

with the solution A(n) = O(nlgn).
For example, take the following critical nodes in R via CASE 1:

R = {(1,2),(3,4),(5,6),(7,8),(1,4),(5,8),(1,8) }

All paths among these initial values in R, require the following set of f values,

{ £(1,1,2), f(3,3,4), £(5,5,6), /(7,7,8), f(1,2,4), (5,6,8) }

Now, applying CASE 2 gives the additional f values that must be considered in recurrence (7),
{ f(1,4,6), f(1,6,8), f(1,4,8) }
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Figure 19 shows some of the initial critical nodes in Dg with their jumpers and edge weights. Notice
that in Figure 19 node m is not given above as a critical node, but jumpers to and from it in
the present model must be considered, since (7,8) and (5,6) are both critical nodes. In addition,
some of the jumpers have symmetric counterparts which are depicted as dashed jumpers without

edge weights.

p(5,8) +f(1,4,8)

sp(7,8) +1(1,6,8)

sp(34) +1(1,24) (5,6) + f(1,4,6)

/\ /\
(1,2)/\(1,4\) w8 _
\\ AN N
\ \
\ \
| \
/ \
) \
/ |
(3.4) }
|
/
/
/
/
/
/
(7.9) +(5,6.8) s
(5.,6) T~ (5,8)/k
\
\
|
/
/
/
(7.8§

Figure 19: The Jumpers Necessary for a Full Balanced Binary Tree in Dg

Figure 19 has the tree of an alternating instance of the MCOP. This represents an instance of
the MCOP that has as its base representation a full balanced tree. Assuming the matrix product
costs are atomic, and assuming no other information about the matrix product costs means that
solving recurrence (7) is the only way to solve the MCOP.

Simply put the number of tree edges that must be evaluated is (nlgn) to solve the MCOP. This
is assuming that each edge weight must be compared independently and we have no information
about them a priori. A proof of the next theorem follows directly from the results of this section.

Theorem 14 On the comparison based model, if we assume the cost of each f value is atomic, then

solving the MCOP costs Q(nlgn).
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Theorem 14 offers a lower bound for all algorithms the authors’ are aware of for solving the
MCOP. This lower bound is parameterized by the starting tree structure of an instance of the
MCOP. This starting tree structure is only one of a small possible number of optimal product
trees and it can be computed in O(n) time. Therefore, some instances of the MCOP with linear
optimal product trees do not apply to the worst case lower bound of the last section. On the other
hand, if some instance of the MCOP has an optimal product tree of depth (lgn), then both the
lower bound of this section and the lower bound of the last section apply. More interestingly, in the
worst case, trees with alternating products of depth (n) have bit based worst case lower bounds
of Q(n?), but the lower bound for the comparison based model becomes Q(n).

The main intuition of the trade-off is that in Figure 18 the larger the canonical subgraph
representing an optimal alternating product the more costly it is by Theorem 10. On the other
hand, the smaller the canonical subgraphs and the larger the tree of canonical subgraphs the more
costly it is by Theorem 14.

4 Conclusions

This paper shows that the typical model for solving the MCOP is not reasonable. In particular, the
comparison based model seems appropriate given the standard presentation of the Matrix Chain
Ordering Problem. In this regard, the trade-off of the two main lower bounds given here highlights
some inadequacies of the present analyses.

Although, if one insists on studying the atomic comparison based model for the MCOP, then
to improve present algorithms, different properties of the MCOP must be exploited than those
currently used. From the results of this paper, using a fixed or logarithmic radix model to improve
these algorithms is not reasonable. But, other properties of the MCOP might give better bounds
for this problem. For example, take the following,

Theorem 15 (Bradford et al. [9]) The problem of edge minimizing m jumpers in n unit rows can
be reduced to the problem of finding the row minima of an m X n totally monotone matrix.

In [1] it is shown that solving the row minima problem sequentially in a n X m totally monotone
matrix costs @(n). Theorem 15 shows there may be hope in using algorithms outside of the present
model for solving the MCOP that may beat the Q(nlgn) atomic comparison lower bound.
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